Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Katherine Bourzac

A View from Katherine Bourzac

Capturing "Hot" Electrons to Double Solar Power

Researchers demonstrate that high-energy electrons lost in conventional solar cells can be captured.

  • June 18, 2010

There’s a limit on the conversion efficiency of a conventional solar cell. No matter how it’s tweaked, it can only convert 31 percent of the light that hits it into usable electrical current. That’s because there’s a broad spectrum of wavelengths in sunlight, and some of it has more energy than the active material in the solar cell can handle. High-energy light hits the active material in a solar cell and knocks loose electrons that have a similarly high energy–then these electrons rapidly lose that excess energy as heat.

Physicists know that if they could capture “hot electrons”, they could more than double the efficiency of solar cells. The problem is that they lose their energy in a picosecond. Now, researchers have for the first time demonstrated that it’s possible to capture hot electrons while they’re still in their high energy state, before that heat loss happens.

Careful design at the nanoscale is key. Instead of a conventional bulk semiconductor, the researchers used quantum dots, because these nanomaterials can confine electrons over a longer timescale. “Nanomaterials can keep electrons electrons hot for a longer period of time, so that you can get them out,” says Xiaoyang Zhu, professor of chemistry at the University of Texas, Austin.

The confinement is great–until you want to get the hot electrons out. “The electron likes to stay inside the nanomaterial, so you need to make an extremely strong interaction with another material” that will conduct the electrons out of the quantum dot, Zhu says. His group coated the quantum dots with a very thin layer of an electrical conductor, and were meticulous about the quality of the interface between that material and the quantum dots.

So now it’s possible to get hot electrons out, but one major problem remains. Those hot electrons require new device designs that prevent them from simply losing their energy to heat once they enter the metal wire of an electrical circuit. “We hope to inspire people to work on the engineering,” says Zhu.

This research was published this week in the journal Science.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.