Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Light-Harvesting Bacteria Reveal Photonic Defense Mechanism

Rhodospirillum Photometricum has a mechanism that allows it to harvest more light in dim conditions but protect its cellular machinery from photon damage when it’s too bright.

  • March 16, 2010

A few years ago, scientists studying the light-harvesting bacteria, Rhodospirillum Photometricum, made a curious discovery. This bacteria is able to exploit solar energy because its cell membrane is filled with chromophore vesicles: regions containing pigment molecules capable of absorbing light and turning it into chemical fuel.

The strange thing about these bacteria was that the membrane came in two forms: one form with large numbers of pigment molecules and another with only a few. And the difference was determined by the amount of light the organism had been exposed to. Why should that be?

Today, Neil Johnson at the University of Miami and a few pals explain why with the aid of a sophisticated model of the behaviour of the membrane. They say that the membrane performs two competing functions. First, it needs to convert large numbers of photons into useful chemical energy. Second, it must protect the inside of the cell from an oversupply of photonic energy and the damage it can cause. Johnson and co say the puzzle is explained by the interplay of these two forces which cause the membrane to form one way or the other.

That’s an interesting insight and not just because it explains the structural differences that appear during the growth of Rhodospirillum Photometricum. Johnson and co hint that a similar approach might be useful for creating a new generations of solar cells. They say: “this new quantitative understanding may help accelerate development of novel solar micropanels mimicking natural designs.”

I guess the important point is that if we want to copy nature’s machinery for harvesting light, we’ll also need to copy the defensive mechanisms that evolved to protect this machinery from over exposure to sunlight. Rather like sun cream for solar cells.

Ref: arxiv.org/abs/1003.2443: Light-Harvesting In Bacteria Exploits A Critical Interplay Between Transport and Trapping Dynamics

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.