Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Small Asteroids Are Held Together by Van Der Waals Forces

Small spinning asteroids are piles of rubble and dust that ought to fly apart but don’t. Now astronomers have worked out why not.

  • February 16, 2010

What holds small asteroids together? Surely not gravity, they’re too small for that. Today, Daniel Scheeres and buddies at the University of Colorado enlighten us with a study of the forces at work in these small bodies.

In 2005, the Japanese Hayabusa mission circled and landed on the potato-shaped asteroid Itokawa, which measures just a few hundred metres in size. (It is due to return to Earth later this year with a sample of asteroid dust.)

Spin rate statistics suggest that Ikotawa and asteroids like it are piles of rubble held together by gravity on scales of 150 metres and larger. But smaller boulders should fly off into space at this rate of spin.

But that creates a puzzle. Images from Hayabusa show that on smaller scales, Ikotawa is little more than a collection of boulders and dust. But if gravity cannot beat the centripetal forces involved, what’s holding Ikotawa together?

Astronomers have known for some time that the forces involved do not need to be large: various simulations have shown that even small cohesive forces can make spinning piles of rubble stable in low gravity environments.

Of the various possibilities, the main ones that astronomers have studied are radiation pressure from the Sun, friction and electrostatic forces between ionised dust (which is responsible for dust levitation on the Moon and so more likely to push dust apart).

The goal of the latest work by Scheeres and company is to “perform a survey of the known relevant forces that act on grains and particles, state their analytical form and relevant constants for the space environment, and consider how these forces scale relative to each other.”

Scheeres and co show that none of the usual suspects is the likely culprit. Instead it looks as if small asteroids are held together by van der Waals forces.

That has two interesting implications. First, for asteroid evolution. Scheeres and co suggest that spinning asteroids gradually throw off larger boulders until they end up as rubble piles held together by van der Waals forces. That may help to explain the size distribution of asteorids.

Second, this process may also explain, at least in part, the formation of planetary rings such as those around Saturn which are made up exclusively of small bodies.

If Scheere and co are right, their conclusions will lead to a significant re-assessment of the surface properties of asteroids, not to mention of the structure and evolution of planetary rings. No small feat.

Ref:arxiv.org/abs/1002.2478: Scaling Forces To Asteroid Surfaces: The Role Of Cohesion

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.
Subscribe today

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

Want more award-winning journalism? Subscribe and become an Insider.

  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Join in and ask questions as our editors talk to innovators from around the world.

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

You've read of free articles this month.