Katherine Bourzac

A View from Katherine Bourzac

Magnetic Liquid Separates Blood Cells

A new device separates healthy and diseased cells.

  • December 9, 2009

Researchers at Yale have demonstrated a device that uses a magnetic liquid to separate blood cells based on their size and shape in just minutes.

This device uses magnetic fields to separate cells by size and shape.
Credit: Hur Koser

The device applies a magnetic field to a liquid containing magnetic nanoparticles. The nanoparticles create waves that carry cells along depending on their size, shape and mechanical properties. The researchers, led by electrical engineering professor Hur Koser, hope to develop a cheap alternative to cell-sorting techniques that are time-consuming and sometimes require expensive labeling.

Liquid suspensions of magnetic particles, called ferrofluids, are already used as industrial lubricants and in loudspeakers and computer hard disks. These liquids typically contain other chemicals to keep the particles from clumping together and from coming out of the suspension. Magnetic nanoparticles are also being explored for cancer therapies and as contrast agents for magnetic resonance imaging (MRI)–both applications that require very low concentrations.

But the Yale group is the first to make a high-concentration, biocompatible ferrofluid that doesn’t contain any chemicals that are harmful to cells, yet still keeps the particles afloat. “It was very tricky to find the parameters to maintain live cells,” says Koser.

In experiments described this week in the Proceedings of the National Academy of Sciences, the Yale researchers made microfluidic channels lined with magnetic-field-generating electrodes. Cells were then added to a ferrofluid in the channel. When magnetic fields were applied along the device, the particles in the fluid pushed the cells along the channel, separating them by size and shape. Something similar can be accomplished using electrical fields, says Koser, but this can damage the cells. His group used the device to separate live blood cells from sickle cells and bacteria.

Koser believes the device could be especially helpful when trying to detect very rare types of blood cell, such as cancerous ones. Rapidly sorting cells using magnetic fields could improve the sensitivity of tests for these rare cells without adding any costly chemical labels. Tumor cells are squishier than healthy ones–possibly because they grow quickly and so don’t form a proper internal cell skeleton–and Koser hopes that magnetic fields will also be able to separate cells based on their elasticity and other mechanical properties.

“The next step is to try this in conjunction with existing sensors to improve their sensitivity and cut down on time,” says Koser.

In the video below, a magnetic field creates waves in a liquid containing magnetic nanoparticles (the nanoparticles are not visible) to separate two types of microbeads based on their size.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.