Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Katherine Bourzac

A View from Katherine Bourzac

Self-Cleaning, Super-Absorbant Solar Cells

Amorphous-silicon solar cells patterned with nanoscale domes absorb more light–and shed water and dust.

  • November 13, 2009

The accumulation of dust on the surface of a solar cell can block light and cut into cell efficiency. Researchers at Stanford have demonstrated that solar cells patterned at the nanoscale with domed structures absorb more light and, as a bonus, are self-cleaning.

Silicon solar cells built on a nanostructured substrate (top left) have a surface patterned with nanoscale domes (top right). The scale bar in both electron-microscope images is 500 nanometers. The diagram shows the layers of the device, from bottom to top: a quartz substrate, a reflective layer of silver, a transparent conducting oxide, the active layer of amorphous silicon, and another oxide layer. Credit: ACS/Nano Letters

The nanoscale patterning is not just on the surface of the cell but is applied to every layer. The cells are built on a substrate patterned with nanoscale cones. The bottom layer is a film of silver 100 nanometers thick that acts as an electrical contact and a light reflector; atop this is a film of amorphous silicon sandwiched between transparent conducting layers. Though the substrate is jagged, the accumulation of layers results in domed structures that happen to resemble the mushroom-like structures other researchers have been developing for self-cleaning surfaces. An added layer of hydrophobic molecules makes the cells nearly superhydrophobic: water droplets roll along the surface, pulling dust away with them.

These nanodome structures not only repel water, but help trap light. Because they’re so small–about 500 nanometers in diameter–the nanodomes interact with light in a cool way, absorbing 94 percent of all light from the infrared to the ultraviolet. A flat solar cell made from the same materials absorbs only 65 percent of light in the same broad spectrum. So far the overall power conversion efficiency of the cells is 5.9 percent. The lead researcher, Stanford materials science professor Yi Cui, says these patterning techniques could be applied to other solar materials. This work is described online in the journal Nano Letters.

Be the leader your company needs. Implement ethical AI.
Join us at EmTech Digital 2019.

Register now
Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.