Computing

Modeling Brain Blasts

A computer simulation reveals how blast waves reverberate around a soldier’s helmet.

Traumatic brain injury (TBI) is often called the signature injury of the war in Iraq. Medical experts have yet to determine exactly what causes the condition, but the violent waves of air pressure emitted by an improvised explosive device (IED) or a rocket-propelled grenade are most likely to blame. These pressure waves travel close to the speed of sound and can rattle the brain’s soft tissue, causing permanent, yet invisible, damage. In an effort to better understand how the waves shake soldiers’ brains, researchers at the Naval Research Laboratory (NRL), in Washington, DC, developed a computer simulation that models the motion of a propagating blast wave using data gathered from laboratory experiments with sensor-studded mannequins.

Under pressure: These images, from a Naval Research Laboratory (NRL) computational model, show the pressure contours of a front-facing blast at various time intervals. Each color represents a different pressure measurement: black is the lowest pressure (1.0 atmosphere, or 14.7 pounds per square inch), and green, yellow, and red are higher pressures. Red is 3.5 atmospheres, or 51.4 pounds per square inch.

“The simulation gives us the full 3-D flow field, velocities, and pressure distributions surrounding the head and the helmet,” says David Mott, a scientist researching computational physics and fluid dynamics at NRL, and the project leader for the model. “We can actually watch the waves traveling and interacting.”

Initial testing has already revealed some compelling results. “We are seeing the focusing of the pressure waves up under the helmet, so that the highest pressure is between the head and helmet, and not on the side facing the origin of the blast,” says Mott. The researchers will present their work today at the 61st Annual Meeting of the American Physical Society’s Division of Fluid Dynamics, in San Antonio, TX.

“The physics of a blast are quite complex,” says Raul Radovitzky, an associate professor of aeronautics and astronautics at MIT who was not involved in the NRL work. Radovitzky has developed a software model incorporating both the physics of pressure waves and the variable properties of the brain’s tissues in collaboration with Walter Reed Army Medical Center. “A blast has many different physical components: the pressure wave, kinetic energy of the fragments, chemical products, thermal components, and electromagnetic emissions,” says Radovitzky, “and the least understood or studied is the effect of the pressure wave on [a soldier’s] head.”

In the new work, the NRL researchers are collaborating with a team of researchers at Allen-Vanguard Technologies, in Canada. The group placed Marine Corps ballistic helmets on mannequins equipped with pressure sensors and accelerometers, and these modified mannequins were placed at various orientations and distances from controlled explosions. The researchers collected data from more than 40 different blast scenarios and integrated the data into their computer simulation.

The simulation uses a set of well-established flow-modeling algorithms for simulating reacting and compressible flow to create a 3-D simulation of the pressure wave that would be experienced by a real soldier. “These [algorithms] have been used in the past, but we are combining them in a new way to make software for this particular problem,” says Mott. The calculations are done in two steps. First, the algorithms are used to model the initial blast to get a realistic blast profile from the explosion. “This includes the chemistry, so we can get the strength of the pressure waves and the velocity field,” says Mott. Second, as the wave approaches the mannequin, this information is fed into a compressible flow simulation that produces a more complex 3-D simulation of the head-helmet geometry. This combined approach makes the calculations more realistic and efficient, says Mott.

Pressure over time: These images show the pressure contours at various times following detonation of 1.5 kilograms of C4 explosives three meters from a mannequin. Different colors represent the different pressure measurements. Dark blue indicates pressure below 0.5 atmospheres; black is 1.0 atmosphere; green, yellow, and red are higher pressures, up to 3.5 atmospheres. The helmet protects unexposed regions of the head from the initial pressures generated by the blast pressure wave, but waves enter the gap between helmet and head as the wave passes. These transmitted waves are focused at some point beneath the helmet, generally on the side farthest away from the source of the blast.

One of the next steps for the researchers is to couple the pressure-wave information with structural-analysis algorithms that model the head to see how these applied pressures would be transmitted into the soft matter of the brain. Computational models that allow scientists to see how the wave hits the brain will help them better understand what is happening neurologically, says Radovitzky.

Mott says that the eventual goal is to create a system to be used in triage so that medical personnel can download an injured soldier’s blast-exposure history and treat him accordingly.

The researchers’ findings could ultimately improve helmet designs and better protect soldiers in the field. They are collaborating with another team of NRL scientists who are designing small sensors that can be embedded in a soldier’s helmet to record key information about exposure to a blast. Other teams are doing similar work: last year, the U.S. Army awarded a million-dollar contract to Simbex, of Lebanon, NH, to build sensor-studded helmets; more recently, the U.S Defense Advanced Research Project Agency (DARPA) awarded a three-year contract worth $5 million to the Palo Alto Research Center (PARC) to develop a simple plastic strip that can be “taped” onto a soldier’s helmet to measure the intensity of an explosion.

Uh oh–you've read all five of your free articles for this month.

Insider Online Only

$19.95/yr US PRICE

Computing

From the latest smartphones to advances in quantum computing, the hardware behind today's digital age is rapidly changing.

You've read of free articles this month.