We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Longer-Lasting Artificial Eyes

An improved retinal implant stimulates neurons to restore sight.

For many blind or partially sighted people, implants that stimulate healthy nerve cells connected to their retinas could help restore some normal vision. Researchers have been working on such implants since the 1980s but with only limited success. A major hurdle is making an implant that can stay in the eye for years without declining in performance or causing inflammation.

Good looking: A new retinal implant sits mostly outside the eye. The coil around the iris receives wireless power and image data from a microcontroller that can be carried on a belt. The coil transmits data to electronics inside a waterproof titanium case (below). The electronics controls an electrode array (not visible) connected to nerves in the back of the retina.

Now researchers with the Boston Retinal Implant Project, which was spun out of MIT, Harvard Medical School, and the Massachusetts Eye and Ear Infirmary in 1988, have developed hardware they say overcomes such issues. The implants have been tested in animals, and the group plans to start human trials by 2010.

In retinal diseases such as acute macular degeneration and retinitis pigmentosa, the light-sensing cells of the retina may no longer work, even though the neurons that carry signals from these cells to the brain are still healthy. The Boston project uses an array of electrodes to stimulate these cells and reproduce a simplified visual image in the subject’s brain. A camera mounted on a pair of eyeglasses captures an image, which is rapidly processed by a microcontroller to produce a simplified picture. This is then wirelessly beamed to the implant, which activates 15 electrodes inside the eye. The implant also receives power wirelessly from the microcontroller.

In its current form, the implant can reproduce only a 15-pixel image, but the group is working on a version with around 100 pixels and hopes to get up to 1,000 eventually.

The latest implant has been successfully tested in pigs, whose eyes are comparable in size to our own. It hasn’t yet been tested in people, but the research group is confident it will restore enough vision to let people walk around unaided. The electrode array has previously been tested for short periods in patients who reported seeing clouds, red spots, and other images when the electrodes were activated one by one. “We know the concept works; now we need to get the device prepared,” says Shawn Kelly, a visiting scientist at MIT who works for the Boston project.

Previously, the device was housed in a flexible plastic case wrapped around the outside of the eye. But over long time periods, the plastic absorbed water. The electronics inside the new device are housed within a waterproof titanium case similar to those used for heart pacemakers. The new retinal implant case is also the smallest ever made, and it has a large number of feed-through holes for the wires that connect to the electrode array, the wireless power component, and the data coil. Machine-milling such a small, intricate case posed a major challenge, says Kelly. But the new case makes for easier, safer surgery because it sits on the side of the eye, away from the entry point for the electrode array. It is also mechanically more stable, Kelly notes.

Other retinal implants sit completely inside the eye, which can cause biocompatibility issues. Kelly says the goal is to develop implants that last for years, so that patients can learn to process the images produced by the implant.

Another arm of the Boston research group led by John Wyatt, a professor of electrical engineering at MIT, is working on algorithms for converting the camera signal into an image the brain can more easily interpret. An initial goal is enabling people to see enough to walk around a room unaided, so the system’s software focuses on edge detection. The Boston group is also working on algorithms that help people recognize faces, which is a far more challenging problem.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.