Proteins Linked to Nerve Fiber Development

Research could lead to new treatments for brain injuries, neurodegenerative disorders.

When MIT biology ­professor Frank Gertler bred mice missing a certain set of genes, he expected their brain cells to have faulty, misrouted nerve fibers. To his surprise, he saw mutant neurons that looked like fried eggs: the somas–or cell bodies–were intact, but the branchlike dendrites and long, skinny axons were missing.

In a normal mouse embryo (top), after 16.5 days of gestation, axons are visible in red as they extend from the cortex upwards toward a part of the brain known as the internal capsule. In a mouse lacking Ena/Vasp proteins (bottom), the axons fail to grow.

The typical neuron in the cerebral cortex has a single axon, which relays information to other cells, and many shorter dendrites, which receive messages from other cells. The genetically altered mice in the study produced brain cells that were unable to extend any axons or dendrites or to connect with other neurons.

The family of proteins encoded by the three genes Gertler was investigating, known as Ena/Vasp proteins, turns out to play a critical role in the development of nerve fibers. Manipulating these proteins may one day help repair spinal-­column injuries and other damage caused by faulty cell-to-cell connections. “We think that the mechanisms we have begun to unravel might open the door to potential regenerative therapies for neurodegeneration or brain injuries,” Gertler says.

A cell’s shape is determined by its cytoskeleton–the internal pillars and girders that push against the cell membrane. To move and change shape, a cell must remodel its cytoskeleton. “It’s like the cell is reading traffic signals and trying to figure out where to go,” Gertler says. Ena/Vasp proteins are the navigators for nerve outgrowths called neurites, the precursors to axons and dendrites.

The proteins are located in the tips of a neurite’s filopodia–short extensions that receive environmental signals and translate them into instructions for the cell. Those instructions tell the cell either to continue extending the filopodia, by lengthening protein filaments, or to stop growth.

“This is one of the first studies that uncover the early steps in how a differentiated neuron begins to acquire its unique morphology,” Gertler says.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.
Subscribe today

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Plus.

  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

You've read of free articles this month.