Rewriting Life

Weighing Living Cells

An ultrasensitive method for weighing cells could lead to a cheap and easy-to-use diagnostic device.

Researchers at MIT have demonstrated that an extremely sensitive biomolecule detector can measure the weight of single living cells. The new biodetector, which the researchers described in the journal Nature, could provide, among other applications, a practical and cheap way to count particular types of cells in, say, a blood sample. (See “Demo: Sensing Success.”)

Cell counter: In this experimental biodetector made at MIT, cells flow through a U-shaped microchannel in a cantilever. As the cells travel through the cantilever, their added mass alters the speed at which the cantilever vibrates, allowing the cells’ mass to be measured.

The heart of the detector is a tiny, vibrating, silicon slab, or cantilever. Inside it, a U-shaped microchannel allows fluids containing cells to flow. As cells travel through the cantilever, their added mass alters the speed at which the cantilever vibrates. “We demonstrated a totally new method for measuring the mass of cells or nanoparticles in solution,” says Scott Manalis, a professor of biological and mechanical engineering at MIT.

The new device could allow medical researchers and physicians to avoid the use of expensive and fragile optic readers when determining the concentrations of specific types of cells in a sample. For example, the number of CD4 cells is an indicator of the immune system’s health in AIDS patients. To count such cells, researchers currently use an optic-based detector. First, they attach fluorescently labeled antibodies to the target cells. When the fluorescently tagged cells flow through a channel, an optical detector images them, allowing researchers to measure the quantity.

Instead of labeling the targeted cells with fluorescent antibodies, Manalis and colleagues plan to use nanoparticles. “The same approach can be used for detection by mass,” says Manalis, “except the fluorescent molecule would be replaced by a nanoparticle. Instead of making specific cells brighter, they can be made heavier so they stand out from the background.”

“It’s a nice nonoptical way to do detection,” says Stephen Quake, a professor of biological engineering at Stanford University. Quake says that the method could be particularly useful for applications that require small and portable devices. And he says that although more work is necessary to determine the best possible use of the detection method, the “research is promising enough that I’m very exited about it.”

The MIT detector overcame several problems associated with existing devices for mass measurements. Typically, molecules to be weighed are placed on top of a cantilever: their added mass changes the speed of the cantilever’s vibrating–just as it would in Manalis’s method. But in existing methods, the measurements must be performed in a vacuum, so the devices are unable to measure living cells in a blood sample.

Manalis’s team surmounts this limitation by pumping a fluid sample containing targeted cells through a microchannel hollowed out of the cantilever. Since the fluid of the sample is inside the cantilever, it does nothing to dissipate its vibrations in a vacuum. The method is sensitive enough to measure the weight of a single cell as it transiently flows through the channel.

A diagnostic device using Manalis’s method for weighing mass could potentially be cheaper and more robust than one that employs optical detection. “Ultimately, we hope to have a disposable MEMS chip that would cost less than ten dollars and still give us the same diagnostic information that a more elaborate optical system could tell us,” Manalis says.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.
Subscribe today

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.

  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

You've read of free articles this month.