Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Intelligent Machines

Atom-Thick Transistor

Graphene device makes for a stable single-electron transistor.

Researchers at the University of Manchester in England have made a single-­electron transistor using graphene, a sheet of graphite only one atom thick. Andre Geim, the professor of physics who led the work, says the transistor consists of electrical contacts that supply and collect current through three-­nanometer-wide areas containing a central island of graphene, called a quantum dot. When current is applied, an electron jumps from one contact to the quantum dot and then to the other contact. A problem with previous single-­electron transistors, says Geim, is that quantum dots of other materials, when shrunk this much, act “like a droplet of liquid on a hot plate” at room temperature. Graphene quantum dots, however, are stable. The Manchester research could yield a practical technology if fabrication techniques advance enough to produce such small features.

A single-electron transistor carved entirely in a graphene sheet. The central element is a so-called quantum dot, which allows electrons to flow one by one. The dot is connected to wider regions that have contact pads used to turn the transistor on and off.
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Print + All Access Digital.
  • Print + All Access Digital {! insider.prices.print_digital !}*

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivery each weekday to your inbox

    The MIT Technology Review App

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.