Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Intelligent Machines

Nano Memory

A nanowire device 100 times as dense as today’s memory chips.

Researchers at Caltech and the University of California, Los Angeles, have reached a new milestone in the effort to use individual molecules to store data, an approach that could dramatically shrink electronic circuitry. One hundred times as dense as today’s memory chips, the Caltech device is the largest-ever array of memory bits made of molecular switches, with 160,000 bits in all. In the device, information is stored in molecules called rotaxanes, each of which has two components. One is barbell shaped; the other is a ring of atoms that moves between two stations on the bar when a voltage is applied. Two perpendicular layers of 400 nanowires deliver the voltage, reading or writing information. It’s a big step forward from earlier prototype arrays of just a few thousand bits. “We thought that if we weren’t able to make something at this scale, people would say that this is just an academic exercise,” says James Heath, professor of chemistry at Caltech and one of the project’s researchers. He cautions, however, that “there are problems still. We’re not talking about technology that you would expect to come out tomorrow.”

Two layers of 400 nanowires (blue and gray areas) encode data on molecules where they cross. Red lines are electrodes.
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to MIT Technology Review.
  • Print + All Access Digital {! insider.prices.print_digital !}* Best Value

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivery each weekday to your inbox

    The MIT Technology Review App

  • All Access Digital {! insider.prices.digital !}*

    {! insider.display.menuOptionsLabel !}

    The digital magazine, plus unlimited site access, our online archive, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    Digital magazine (6 bi-monthly issues)

    Access to entire PDF magazine archive dating back to 1899

    The Download: newsletter delivery each weekday to your inbox

  • Print Subscription {! insider.prices.print_only !}*

    {! insider.display.menuOptionsLabel !}

    Six print issues per year plus The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Print magazine (6 bi-monthly issues)

    The Download: newsletter delivery each weekday to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.