Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

From the Labs: Information Technology

New publications, experiments and breakthroughs in information technology–and what they mean.

More-Realistic Fluid Animations
A new approach helps computer-animated fluids flow more naturally

The spinning liquid in this snow globe is the product of a new animation technique developed at Caltech. The researchers say their geometric approach yields more realistic simulations of moving liquid.

Source: “Stable, Circulation-Preserving, Simplicial Fluids”
Mathieu Desbrun et al.
ACM Transactions on Graphics 26(1)

This story is part of our March/April 2007 Issue
See the rest of the issue
Subscribe

Results: Researchers at the California Institute of Technology have developed a new geometric approach to simulating fluid flow that’s more realistic.

Why it matters: Numerical approaches commonly used in computer animation and in aerodynamics simulations contain inaccuracies that can cause graphically depicted liquids to appear to flow unnaturally. For instance, when used to model whirlpools, these equations predict an exaggerated decrease in energy, so animations of swirling water slow down for no apparent reason. Animators need to spend time correcting these errors by hand. A numerical treatment that better respects liquids’ actual behavior could save animation studios time and money.

Methods: The researchers used a new type of mathematics called discrete differential geometry to calculate the flux of a flowing liquid, a property that determines the velocity and position of the liquid at any time. The researchers say that because their equations use flux, rather than just fluid velocity, they more accurately capture the behavior of swirling liquids.

Next steps: The new approach should yield simulations that better predict the flow of fluids–say, water or air turbulence around planes or boats. Eventually, the approach could be incorporated into software for movie studios, but that will require more research on how to modify the equations to simulate a wider range of natural phenomena.

Extra Room for Transistors
New architecture could make chips faster and keep Moore’s Law alive

Source: “Nano/CMOS Architectures Using a Field-Programmable Nanowire Interconnect”
Gregory S. Snider and R. Stanley Williams
Nanotechnology 18: 035204

Results: Hewlett-Packard Labs researchers R. Stanley Williams and Greg Snider have redesigned the chips known as field-programmable gate arrays to make room for eight times as many transistors, without shrinking the transistors themselves.

Why it matters: As electronic devices, such as transistors, grow smaller, engineers can pack them closer together, producing faster and more powerful computer chips. In the next decade, however, the standard techniques for shrinking transistors will run up against fundamental physical limits, so engineers are looking for new ways to increase the density of chip circuitry.

Methods: In today’s chips, some of the silicon real estate is taken up by aluminum-wire interconnects that supply power and instructions to the transistors. To make room for more transistors, the HP researchers designed a chip whose wires are on top of instead of in between the transistors. They used what they called a “crossbar structure,” a sort of nanoscale wire mesh developed at HP. Each junction in the mesh acts as a switch that controls the flow of electrons to and from the transistor beneath it.

Next steps: The researchers are developing a laboratory prototype that uses the design, and Williams expects it to be complete by the end of the year. By 2010, he says, the technology should be ready for manufacturing.

Couldn't make it to EmTech Next to meet experts in AI, Robotics and the Economy?

Go behind the scenes and check out our video
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.