Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Kevin Bullis

A View from Kevin Bullis

Nanobatteries and Moore's Law

A new YouTube video demonstrates one company’s energy-storage nanotechnology.

  • February 21, 2007

A company that makes DSL broadband equipment, mPhase Technologies, based in Little Falls, NJ, has been touting its new nanotech-based battery with a flurry of press releases and, most recently, a video on YouTube.

The video begins with a voice-over complaining, rightly enough, that although the cost and performance of computer chips have been increasing and improving, respectively, very quickly, following Moore’s Law–that the number of transistors on a chip will double every couple of years–batteries haven’t been keeping up. So is the company’s new tech the battery world’s answer to Moore’s Law?

Unfortunately, the company’s battery doesn’t seem to be the breakthrough that cell-phone users and electric-car enthusiasts have been looking for. Although mPhase is marketing the battery as a long-awaited revolution in battery design, the company isn’t touting doubled energy capacity or tripled power output. And it’s not trumpeting slashed prices or even long calendar life, both important features if electric cars are ever going to dominate the roads.

What’s exciting here, apparently, is that the battery can sit unused on the shelf for decades and, after that, work just like new. This is accomplished by keeping the electrolyte out of contact with the battery’s electrodes until the moment power is needed. The nanotechnology involved is a pattern of nanorods that keep the electrolyte suspended above the electrode materials until a voltage is applied.

The battery could very well be an excellent advance–but for some pretty specific applications, such as active RFID tags and smart munitions, which might sit for months or years in warehouses and bunkers before being used.

Meanwhile, advances in energy capacity and calendar life are coming from improvements in electrode materials, sometimes using nanoscale particles. (See “3M’s Higher-Capacity Lithium-Ion Batteries,” “Powering GM’s Electric Vehicles,” and “Battery Breakthrough?”) These might lead to a doubling of energy capacity within a decade, which could go far toward improving electronic devices and cars. Battery performance could double in the next 10 years, according to one MIT scientist. (See “How Future Batteries Will Be Longer-Lasting and Safer.”) That’s no Moore’s Law, but, combined with more-efficient devices, it could make a big difference.

Get stories like this before anyone else with First Look.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.