Rewriting Life

Finding Evolution's Signatures

Comparing genomes of different animals allows scientists to decipher hidden elements in the human genome.

Though researchers have finished sequencing the human genome, it is still far from understood. A major objective of biotechnology is to develop the experimental and computational tools necessary for deciphering the signals encoded within the genome and to understand their role in human health and disease.

Illustration by Harry Campbell

Much remains unknown. It is still a matter of debate exactly how many genes the genome encodes, or even how a gene should be defined. In addition, scientists are just beginning to understand the array of regulatory sequences that punctuate the genome and dictate when certain genes are turned on and off. The complex code within these elements has yet to be deciphered.

This story is part of our September/October 2006 Issue
See the rest of the issue
Subscribe

Comparative genomics can shed the powerful light of evolution on these unknowns. Functional regions of the DNA sequence, such as genes and regulatory regions, have been well conserved, remaining largely unchanged across related species through millions of years of evolution; but DNA sequences that do not code for genes or regulatory regions change more rapidly. To help us understand the evolutionary constraints of functional elements in the human genome, the National Human Genome Research Institute has recently expanded its sequencing efforts to include additional mammalian genomes.

In my group, instead of simply searching for highly conserved elements, we search for elements that have changed in particular ways. By comparing various genomes, we have found several evolutionary signatures–common patterns in the way a particular DNA sequence has evolved over time. We are now using these evolutionary signatures to reanalyze the human, yeast, and fly genomes and have already uncovered hundreds of novel genes, novel exons, and unusual gene structures.

We have also used genome-wide conservation patterns to define subtle regulatory motifs that are another type of evolutionary signature. Coupled with rapid string search algorithms, these signatures have led to the discovery of a complete dictionary of known and novel regulatory elements in the human, yeast, and fly, revealing the building blocks of gene regulation.

These evolutionary signatures are universal across kingdoms of life. With complete genomes, we can use them to elucidate common evolutionary principles, interpret our genome, study human variation and evolution, and revolutionize our understanding of human biology.

Manolis Kellis, one of the TR35, is an assistant professor of computer science at MIT.

The latest Insider Conversation is live! Listen to the story behind the story.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.