Intelligent Machines

3-D Ultrasound

How 3-D ultrasound works.

Baby’s first picture is usually not a Kodak moment but a grainy black-and-white sonogram. Such images-generated with ultrasound technology that sends harmless sound waves into the mother’s womb and measures what bounces back-usually tax the imagination of anxious parents trying to discern a foot, rump, or face. Images produced with new 3-D ultrasound technology, however, are a marked improvement. The system uses a monitor, computer controls, a processing unit, and a handheld transducer probe, which emits and collects sound waves, to render nose, lips, eyes, fingers, and toes in astonishing detail. It’s as if someone photographed a clay model of the fetus.

Ultrasound was first used for clinical diagnosis in 1942 by Austrian psychiatrist and neurologist Karl Dussik. By the 1980s, improvements in microprocessor speed had advanced it into the 3-D arena. Kazunori Baba of the University of Tokyo, Japan, devised the first successful 3-D ultrasound system for obstetrics in 1984; it compiled a series of 2-D “slices” into a 3-D sonogram. But it has really been in the last couple of years that inexpensive computer technology has made it possible to acquire, reconstruct, and display 3-D images quickly, says Aaron Fenster, director and scientist at the Robarts Research Institute’s Imaging Research Laboratories in London, Ontario.

Today the technology is being developed by a wide range of companies, including Philips Research, General Electric, and Siemens. Its improved imaging allows doctors to identify or rule out defects such as cleft lips, club feet, and vertebral malformations.”I would expect that in five years, every ultrasound machine in use will have a 3-D option,” says Fenster.

This story is part of our July/August 2003 Issue
See the rest of the issue
Subscribe

Applications for 3-D ultrasound extend outside the realm of obstetrics, too. Radiologists use the technology to locate blood clots in veins and arteries; perform noninvasive breast biopsies on suspicious lesions; diagnose problems in muscles, tendons, or joints; and analyze pains or masses in the abdomen or thyroid. But most people will associate 3-D ultrasound technology with that first glimpse of a new life-the unmistakable faces and features of their yet unborn daughters and sons.

The latest Insider Conversation is live! Listen to the story behind the story.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Listen in as our editors talk to innovators from around the world.

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.