Intelligent Machines

Getting Active

New ceramics get smarter, tougher.

“Smart materials” are already a big hit in sports. In baseball, for instance, new aluminum bats can now quiet the “bees” a player feels when hitting a ball off the handle. Likewise, smart skis can damp vibrations as needed. The “active” part of these sporting goods is a credit-card-sized wafer that uses quirky but well-studied materials called piezoelectrics. These compounds convert mechanical stresses, such as vibrations, into an electric signal (which can be harmlessly shunted), or, conversely, change shape or size in response to electricity.

But what if researchers could find ways to make the entire product active, rather than just a discrete embedded device? That could mean smart helicopter rotors or airplane wings that twist on command, changing shapes to reduce vibrations and noise. Key to that is finding active materials that are highly responsive and yet tough enough to form structural parts.

Researchers may have come a step closer to achieving that, as several groups of materials scientists, including ones at Pennsylvania State University and MIT, have identified “single-crystal” piezoelectric ceramics that are far more active than conventional materials. The MIT group, headed by Yet-Ming Chiang, a professor of materials science, and Nesbitt Hagood, director of the Institute’s Active Materials and Structures Lab, has now made novel single-crystal piezoceramics that can be easily made into fibers-a critical step to fabricating active composites that could be used to make entire structures smart.

This story is part of our May/June 1999 Issue
See the rest of the issue
Subscribe

Each type of the single-crystal materials has advantages. The MIT piezoceramics do not contain lead, which means they are less toxic and could be used in biological applications. The Penn State materials are more responsive but are lead-based and have not been made into fibers.

Nesbitt and his co-workers first developed active fiber composites several years ago using conventional piezo materials. The single-crystal piezos, however, could make the composites far cheaper and more practical, says Aaron Bent, founder of Continuum Control, a Cambridge, Mass.-based startup trying to commercialize the composites.

The MIT scientists hope to make an active fiber composite using the single-crystal piezoceramics within 18 months.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.
Subscribe today

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.

  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

You've read of free articles this month.