Skip to Content
Alumni profile

The practice of moving energy around

Rod Bayliss III ’20, MEng ’21

August 24, 2021
Rod Bayliss
Gretchen Ertl

One of the things Rod Bayliss III ’20, MEng ’21, remembers most clearly from his childhood is his father’s 1964 Ford Mustang. “I was fascinated by that car,” says Bayliss. “Especially by the engine, this thing that converted oxygen and fuel into power.”

Bayliss grew up in Augusta, Georgia. Math and physics came easily to him, and in high school he developed a passion for Latin, Greek, and debating. “I particularly loved Latin grammar,” he recalls, “with the declensions that let you move words around in a sentence. It reminded me of solving engineering problems.”

Bayliss’s parents, both of whom hold engineering degrees, urged him to consider the career opportunities in electrical engineering. At MIT, he signed up to work with professor David Perreault, SM ’91, PhD ’97, on his power electronics research through the Undergraduate Research Opportunities Program (UROP).

“At the time I still thought I wanted to work on engines,” says Bayliss. “But in that UROP I discovered power electronics. The practice of moving energy around. That was the name of the game, and I loved it.”

After learning how electrical energy is generated, stored, and transformed, he began work on an inductor—a device that can store large amounts of magnetic energy—that would generate high-frequency radio waves, a crucial element in the process of etching ultrafine silicon chips. “You put gas into a chamber and then use those radio waves to phase-change the gas into plasma,” he explains. “Then you direct the plasma to do the etching. The process requires enormous amounts of energy.”

After completing his undergraduate degree in three and a half years, Bayliss stayed on at MIT—and continued to perfect his inductor—for an additional year, earning a master’s in January 2021. He is now in a doctoral program at the University of California, Berkeley. 

Fittingly, he’s returned to his first engineering crush: motors. Specifically, he is researching new methods of storing electrical energy and converting it into a form that could reliably power an aircraft engine. Last March at the Black Alumni/ae of MIT (BAMIT) research slam, an online competition in which alumni pitched their research to a panel of judges, this work won Bayliss first prize.

Bayliss knows the objective is complex. “It’s uniquely more challenging to power an aircraft with electricity than with fossil fuels,” he says. “The batteries are heavy.  And the consequences of system failure—from the battery to the inverter to the motor—in midflight would be catastrophic. But we’re going to make these aircraft power electronics work out.”

Keep Reading

Most Popular

Here’s how a Twitter engineer says it will break in the coming weeks

One insider says the company’s current staffing isn’t able to sustain the platform.

Technology that lets us “speak” to our dead relatives has arrived. Are we ready?

Digital clones of the people we love could forever change how we grieve.

How to befriend a crow

I watched a bunch of crows on TikTok and now I'm trying to connect with some local birds.

Starlink signals can be reverse-engineered to work like GPS—whether SpaceX likes it or not

Elon said no thanks to using his mega-constellation for navigation. Researchers went ahead anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.