Skip to Content

A 3-D-Printed Implant Saves Lives

Doctors rescue boys by propping open their airways using stents made via 3-D printing.

The three infant boys were each near death. They were all on ventilators. All had airways so tiny that the breaths they tried to exhale couldn’t get out.

As a last-ditch effort to save their lives, doctors at the University of Michigan used a 3-D printer to produce small plastic stents that surgeons attached, just above the boys’ lungs, to prop the airways open.

In all three attempts, carried out since 2012, the procedure worked and the boys were able to breathe on their own. All three boys were able to go home—one for the first time.

In a first for 3-D printing of surgical implants, the stents were also designed to adapt as the boys grew from infancy to toddlerhood. An opening along one side of the rounded stents allowed their airways to double in size before the implants gradually dissolved, according to a report posted online on Wednesday in Science Translational Medicine by doctors at the University of Michigan.

The boys’ condition, known as tracheobronchomalacia, can be fatal but almost always resolves itself when children grow and their airways get bigger, at around age three.

In 2013, Glenn Green, an associate professor of otolaryngology at the University of Michigan, first reported using the “bioresorbable” airway splint in a infant, one of the three cases described on Wednesday. The first boy is doing well about three years after his surgery.

Green’s team printed out 3-D models of the boys’ tracheas and their bronchi, the Y-shaped branch taking air into the lungs, and then designed the stents to fit their precise anatomy. Each bronchus is only the size of a pencil lead in an infant, he says, but grows quickly.

According to the doctors, the implants were each designed and produced in less than five days.

Doctors also have started printing models to plan complex surgeries such as face transplants. Now that printed components allow new types of surgical procedures, Green sees 3-D printing as a dramatic advance. “I look at this as one of the biggest changes that is happening to surgery,” he says.

The airway stents were made from a polymer, polycaprolactone, and formed using a 3-D printing process called laser sintering. In that process, powdered material is laid down layer by layer and then fused with a laser, gradually producing a complex three-dimensional shape.

The stents are customized to match the length, diameter, and thickness of the child’s airway. The plastic material slowly dissolves over about three years, and as it breaks down it becomes less stiff, allowing the airway additional room to grow. Green says the plastic stent costs only about $10 in materials to produce.

Green says the experimental stents couldn’t be tested in animals because the boys’ condition doesn’t occur in animals. As a consequence, he had to obtain explicit permission each time from the U.S. Food and Drug Administration and negotiate with insurers to pay to transport the desperately ill children to Michigan. He said several children died while awaiting approval for the treatment. He’s hoping to get FDA approval and funding for a clinical trial so a more practical process for treating children with this condition can be developed.

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.