Skip to Content
Uncategorized

New Titanium-Making Process Could Result in Lighter Aircraft

A new process could extend the use of titanium for lightweight, more fuel-efficient airplanes.
February 26, 2015

A new process for producing titanium—a metal that’s increasingly used in aircraft to reduce weight and fuel consumption—is significantly cheaper and less energy-intensive than conventional methods. The technique could lead to titanium being used to reduce the weight of cars, helping automakers meet tightening fuel economy regulations.

Titanium normally takes a significant amount of energy to make. The conventional method, called the Kroll process, involves multiple steps requiring very high temperatures. The new process, being developed by SRI International, takes fewer steps, uses less energy, and produces titanium powder, rather than ingots. The powder can be pressed and fused into something that’s very close to the shape of the final product, which reduces the amount of machining required.

SRI’s process uses plasma arcs to facilitate reactions between molecules of hydrogen and titanium chloride, a chemical produced from titanium ore. “Arcs, like lightning bolts, crack the hydrogen, producing atomic hydrogen that can readily react,” says Barbara Heydorn, senior director of the Energy Center at SRI. The reactions produce titanium vapor that quickly solidifies and forms titanium powder.

Carbon emissions limits in Europe have led to increased use of titanium in aircraft. The possibility of similar regulations being introduced in the United States and concerns over volatile fuel prices are also boosting the use of titanium in planes. The lightweight, corrosion-resistant material is ideal for certain engine parts, including fan blades. It also serves as a critical structural material in newer aircraft that use carbon composite materials, since the aluminum ordinarily used in aircraft structures is incompatible with carbon composites (see “Additive Manufacturing Is Reshaping Aviation”).

SRI has so far demonstrated a small-scale version of the process for producing pure titanium. It’s currently working on a two-stage process to improve yields and lower costs before attempting to scale it up.

SRI could face major challenges to bringing the new process to market. Introducing a new metals process is particularly difficult, says Donald Sadoway, a professor of materials chemistry at MIT. Large investments are required to make cost-efficient processing plants, he says, and it can be hard to get funding for new technologies because they face “the widely held belief that the metals industry is mature and that the optimum processes have been discovered.”

Keep Reading

Most Popular

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

computation concept
computation concept

How AI is reinventing what computers are

Three key ways artificial intelligence is changing what it means to compute.

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

We reviewed three at-home covid tests. The results were mixed.

Over-the-counter coronavirus tests are finally available in the US. Some are more accurate and easier to use than others.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.