Skip to Content
Uncategorized

Additive Manufacturing Is Reshaping Aviation

Advanced manufacturing technologies are leading to smaller jet engines.
February 6, 2015

The aviation company Pratt & Whitney is exploring whether technology known as additive manufacturing could be used to develop more compact jet engines that could make commercial airplanes lighter and more fuel efficient.

Pratt & Whitney used additive manufacturing to create these engine brackets.

Pratt & Whitney already uses two additive manufacturing techniques to make some engine components. Instead of casting metal in a mold, the methods involve forming solid objects by partially melting a metal powder with either a laser or an electron beam. Other aircraft makers use similar technology; GE, for example, creates fuel nozzles for jet engines using its own additive manufacturing techniques (see “Breakthrough Technologies 2013: Additive Manufacturing”).

The methods being used by GE and Pratt & Whitney are more complex and sophisticated than desktop 3-D printing, which involves creating objects by depositing ultrathin layers of material successively (see “The Difference Between Makers and Manufacturers”).

Additive manufacturing processes can reduce waste, speed up production, and enable designs that might not be feasible with conventional production processes. The novel shapes and unusual material properties the technology makes possible—such as propeller blades optimized for strength at one end and flexibility at the other—could change the way airplanes are designed.

One possibility being explored by Pratt & Whitney is engines with fewer parts, which would need less assembly and be cheaper to make. Frank Preli, chief engineer for materials and process engineering at the company, anticipates the possibility of radical new aircraft designs “like many engines embedded in a wing for ultra-aerodynamic efficiency.”

Such a design could have many benefits, says Mark Drela, a professor of aeronautics and astronautics at MIT. Distributing engines along the trailing edge of wings and in the rear of the fuselage can theoretically cut fuel consumption by 20 percent and decrease an aircraft’s weight. These benefits “add up to very large fuel burn reductions,” Drela says. Savings of 50 percent “are not inconceivable.”

To get to that point, Preli says, additive manufacturing techniques need to improve to allow for higher precision. Once researchers understand the fine, molecular-scale physics of how lasers and electron beams interact with powders, he says, “that will lead to the ability to put in finer and finer features, and faster and faster deposition rates.”

It makes sense that the aerospace industry has been among the first to adopt additive manufacturing—even slight improvements to performance or small reductions in weight can lead to big fuel savings, justifying the high initial cost of printing a part.

Keep Reading

Most Popular

Russian servicemen take part in a military drills
Russian servicemen take part in a military drills

How a Russian cyberwar in Ukraine could ripple out globally

Soldiers and tanks may care about national borders. Cyber doesn't.

Death and Jeff Bezos
Death and Jeff Bezos

Meet Altos Labs, Silicon Valley’s latest wild bet on living forever

Funders of a deep-pocketed new "rejuvenation" startup are said to include Jeff Bezos and Yuri Milner.

ai learning to multitask concept
ai learning to multitask concept

Meta’s new learning algorithm can teach AI to multi-task

The single technique for teaching neural networks multiple skills is a step towards general-purpose AI.

mouse engineered to grow human hair
mouse engineered to grow human hair

Going bald? Lab-grown hair cells could be on the way

These biotech companies are reprogramming cells to treat baldness, but it’s still early days.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.