Invisible Cochlear Implants
Cochlear implants that electrically stimulate the auditory nerve have granted at least limited hearing to hundreds of thousands of people worldwide who otherwise would be totally deaf. Current devices, however, require that a transmitter about an inch in diameter be affixed to the skull, with a wire snaking down to a combined microphone and power source that looks like an oversized hearing aid.
Researchers at MIT’s Microsystems Technology Laboratories collaborated with physicians from Harvard Medical School and the Massachusetts Eye and Ear Infirmary to develop a new low-power signal-processing chip that could lead to a cochlear implant with no external hardware. It would be wirelessly recharged and would run for about eight hours per charge.
They also developed a prototype charger that plugs into an ordinary cell phone and can recharge the signal-processing chip in roughly two minutes.
“The idea with this design is that you could use a phone, with an adapter, to charge the cochlear implant, so you don’t have to be plugged in,” says Anantha Chandrakasan, a professor of electrical engineering and corresponding author on a paper by Marcus Yip, PhD ’13, presented at the International Solid-State Circuits Conference. “Or you could imagine a smart pillow, so you charge overnight, and the next day, it just functions.”
Existing cochlear implants use an external microphone to gather sound, but the new implant would use the natural microphone of the middle ear, which is almost always intact in cochlear-implant patients. Normally, delicate bones in the middle ear, known as ossicles, convey the vibrations of the eardrum to the cochlea, the small spiral chamber in the inner ear that converts acoustic signals to electrical ones. The new device would employ a tiny sensor that detects the ossicles’ vibrations, relaying their signal to a microchip implanted in the ear. That microchip would convert it to an electrical signal and pass it on to an electrode in the cochlea.
Lowering the power requirements of the converter chip was the key to dispensing with the skull-mounted hardware. Among other innovations, Chandrakasan’s lab developed a new signal-generating circuit whose waveform—the basic electrical signal it emits—requires 20 to 30 percent less power to produce than those used in existing cochlear implants.
The researchers showed that the chip and sensor can pick up and process speech played into the middle ear of a human cadaver. They also tested the new waveform on four patients with cochlear implants and found that it did not compromise their ability to hear.
Keep Reading
Most Popular
The inside story of how ChatGPT was built from the people who made it
Exclusive conversations that take us behind the scenes of a cultural phenomenon.
ChatGPT is about to revolutionize the economy. We need to decide what that looks like.
New large language models will transform many jobs. Whether they will lead to widespread prosperity or not is up to us.
Sam Altman invested $180 million into a company trying to delay death
Can anti-aging breakthroughs add 10 healthy years to the human life span? The CEO of OpenAI is paying to find out.
GPT-4 is bigger and better than ChatGPT—but OpenAI won’t say why
We got a first look at the much-anticipated big new language model from OpenAI. But this time how it works is even more deeply under wraps.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.