Skip to Content
77 Mass Ave

Snap to It

A simple scheme creates self-propelled—and self-assembling—robots.
December 17, 2013

In 2011, when an MIT senior named John Romanishin proposed a new design for modular robots to his robotics professor, Daniela Rus, she said, “That can’t be done.”

Kyle Gilpin, Daniela Rus, and John Romanishin
Kyle Gilpin, Daniela Rus, and John Romanishin display their self-propelled robots, known as M-Blocks.

Two years later, Rus showed a colleague at Cornell University a video of prototype robots based on Romanishin’s design. “That can’t be done,” he said.

In November, Romanishin—now a research scientist in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL)—established once and for all that it could be done, when he, Rus, and postdoc Kyle Gilpin presented their robots at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Known as M-Blocks, the robots are cubes with no external moving parts. Nonetheless, they’re able to climb over and around one another, roll across the ground, and even leap through the air.

Inside each M-Block is a flywheel that can reach speeds of 20,000 revolutions per minute; when the flywheel is braked, it imparts its angular momentum to the cube.

Simple self-assembling robots that can directly slide or pivot about each other are “one of these things that the [modular-­robotics] community has been trying to do for a long time,” says Rus, a professor of electrical engineering and computer science and director of CSAIL. “We just needed a creative insight and somebody who was passionate enough to keep coming at it—despite being discouraged.”

On each edge of a cube are two cylindrical magnets, mounted like rolling pins. When two cubes approach each other, the magnets rotate so that north poles align with south and vice versa. So any face of any cube can attach to any face of any other.

The cubes’ edges are also beveled, so when two cubes are face to face, there’s a slight gap between their magnets. When one cube begins to flip on top of another, the bevels, and thus the magnets, touch. The connection between the cubes becomes stronger, anchoring the pivot.

As with any modular-robot system, the hope is that the modules can be miniaturized. But the researchers believe that a more refined version of their system could prove useful even at something like its current scale, temporarily repairing bridges or buildings during emergencies, raising and reconfiguring scaffolding for building projects, or swarming into environments hostile or inaccessible to humans to diagnose problems and reorganize themselves into solutions.

Keep Reading

Most Popular

individual aging affects covid outcomes concept
individual aging affects covid outcomes concept

Anti-aging drugs are being tested as a way to treat covid

Drugs that rejuvenate our immune systems and make us biologically younger could help protect us from the disease’s worst effects.

Europe's AI Act concept
Europe's AI Act concept

A quick guide to the most important AI law you’ve never heard of

The European Union is planning new legislation aimed at curbing the worst harms associated with artificial intelligence.

Uber Autonomous Vehicles parked in a lot
Uber Autonomous Vehicles parked in a lot

It will soon be easy for self-driving cars to hide in plain sight. We shouldn’t let them.

If they ever hit our roads for real, other drivers need to know exactly what they are.

crypto winter concept
crypto winter concept

Crypto is weathering a bitter storm. Some still hold on for dear life.

When a cryptocurrency’s value is theoretical, what happens if people quit believing?

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.