Skip to Content

The Million-Core Problem

Stanford researchers break a supercomputing barrier.
January 30, 2013

A team of Stanford researchers have broken a record in supercomputing, using a million cores to model a complex fluid dynamics problem. The computer is a newly installed Sequioa IBM Bluegene/Q system at the Lawrence Livermore National Laboratories. Sequoia has 1,572,864 processors, reports Andrew Myers of Stanford Engineering, and 1.6 petabytes of memory.

What do you need a million cores for? Apparently, for the complex problem of modeling supersonic jet noise. Joseph Nichols, a researcher at Stanford Engineer’s Center for Turbulence Research, led the effort. Naturally, engineers would like to design engines that don’t make as much noise–it’d be a boon for airport workers, airports, and the communities around them. Simulating new engine designs is one way to do this–but doing so is extraordinarily complex, requiring many, many processors to do so quickly.

“The waves propagating throughout the simulation require a carefully orchestrated balance between computation, memory and communication,” is how Myers puts it. The complicated math problem Nichols wanted to run was divided up into smaller parts for the million-plus cores to work on. The staff in charge of the supercomputer wasn’t even sure if “full-system scaling” of the type Nichols wanted to try would work properly–but it passed with flying colors. (For more on a different though equally exciting frontier of supercomputing, see “Computing with Light.”)

Wired’s Klint Finley helpfully explains what makes Sequoia different: its cores are networked in a new way. It gets a little technical: “Each processor is directly connected to ten other processors, and can connect, with lower latency, to processors further away. But some of those processors also have an 11th connection, which taps into a central input/output channel for the entire system. These special processors collect signals from the processors and write the results to disk.”

Finley points out that while open source platforms like Hadoop can help bring distributed computing of a sort to the masses, there’s no replacement for dedicated hardware of the kind Sequoia provides.

Sequoia was once the fastest supercomputer; it was recently surpassed, though, by an Oak Ridge computer called Titan, a Cray XK7. SingularityHub points out that speed and number of cores are important, but not everything: we need to appreciate the value of efficiency gains, too. Sequoia was recently ranked 29th by Green500 in the efficiency department.

Keep Reading

Most Popular

Here’s how a Twitter engineer says it will break in the coming weeks

One insider says the company’s current staffing isn’t able to sustain the platform.

Technology that lets us “speak” to our dead relatives has arrived. Are we ready?

Digital clones of the people we love could forever change how we grieve.

How to befriend a crow

I watched a bunch of crows on TikTok and now I'm trying to connect with some local birds.

Starlink signals can be reverse-engineered to work like GPS—whether SpaceX likes it or not

Elon said no thanks to using his mega-constellation for navigation. Researchers went ahead anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.