Skip to Content
MIT News magazine

Tapping into the Power of Sugar

Glucose-powered brain implants could one day help paralyzed patients
August 21, 2012

MIT engineers have developed a fuel cell that runs on the same sugar that powers human cells: glucose. It might someday drive highly efficient brain implants that could help paralyzed patients move their arms and legs again.

The fuel cell strips electrons from glucose molecules to create a small electric current. The researchers, led by Rahul Sarpeshkar, an associate professor of electrical engineering and computer science, fabricated it on a silicon chip, allowing it to be integrated with other circuits that would be needed for a brain implant. 

The new cell has no biological components. A platinum catalyst mimics the activity of cellular enzymes that break down glucose to generate ATP, the cell’s energy currency. (Platinum has a proven record of long-term biocompatibility within the body.) So far, the fuel cell can generate up to hundreds of microwatts—enough to power a clinically useful ultralow-power neural implant.

“It will be a few more years into the future before you see people with spinal-cord injuries receive such implantable systems in the context of standard medical care, but those are the sorts of devices you could envision powering from a glucose-based fuel cell,” says Benjamin Rapoport, PhD ’11, a former graduate student in Sarpeshkar’s lab and the first author on a recent PLoS ONE paper describing the fuel cell. 

Rapoport calculated that in theory, the glucose fuel cell could get all the sugar it needs from the cerebrospinal fluid (CSF) that bathes the brain and protects it from banging into the skull. There are very few cells in CSF, so it’s highly unlikely that an implant located there would provoke an immune response. CSF also contains significant glucose that the body does not generally use.

Sarpeshkar’s group is a leader in the field of ultralow-power electronics, having pioneered designs for cochlear implants and brain implants. “The glucose fuel cell, when combined with such ultralow-power electronics, can enable brain implants or other implants to be completely self-powered,” says Sarpeshkar.

Although Sarpeshkar has begun working on bringing ultralow-power medical technology to market, he cautions that glucose-powered implantable medical devices are still many years away. 

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.