Skip to Content

Power Polymers

Conductive binders could make high-capacity battery electrodes practical
December 20, 2011

Source: “Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes”
Gao Liu et al.
Advanced Materials
, published online September 23, 2011

Results: An electrode material that combines silicon with a new polymer developed by researchers at Lawrence Berkeley National Laboratory can store four times as much energy as conventional anodes, potentially increasing overall battery storage by 30 percent. The electrodes maintained these performance levels over 650 charging cycles.

Why it matters: Silicon electrodes have a high theoretical storage capacity, but they tend to break up after only a few charges, greatly reducing their actual capacity. Using silicon in the shape of nanowires and other nanostructures helps, but that makes it difficult to maintain electrical conductivity, and the manufacturing techniques required could prove expensive. The new polymer holds silicon particles together and maintains conductivity, and electrodes made with it could be produced on existing battery manufacturing equipment. The resulting higher-capacity batteries could improve personal electronics and extend the range of electric vehicles.

Methods: The researchers analyzed the voltage levels and other conditions that materials encounter in battery elec­trodes and worked with theoretical chemists to identify a list of conductive polymers that could withstand these conditions. They added molecules designed to tune the electrical properties of the polymer and to make it more flexible, which in turn improves its ­ability to bind particles of silicon together.

Next Steps: The researchers are collaborating with a major material-industry partner to scale up production of silicon-based electrodes that use the binders.

Keep Reading

Most Popular

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

biomass with Charm mobile unit in background
biomass with Charm mobile unit in background

Inside Charm Industrial’s big bet on corn stalks for carbon removal

The startup used plant matter and bio-oil to sequester thousands of tons of carbon. The question now is how reliable, scalable, and economical this approach will prove.

AGI is just chatter for now concept
AGI is just chatter for now concept

The hype around DeepMind’s new AI model misses what’s actually cool about it

Some worry that the chatter about these tools is doing the whole field a disservice.

Peter Reinhardt
Peter Reinhardt

How Charm Industrial hopes to use crops to cut steel emissions

The startup believes its bio-oil, once converted into syngas, could help clean up the dirtiest industrial sector.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.