Skip to Content

Medicine Needs Frugal Innovation

A low-cost pocket ultrasound device can see into the human heart. So why do so few doctors use it?
December 12, 2011

In the history of medical innovation, advances in technology have been inextricably linked to increases in cost. But we are at a unique moment in which the insular world of medicine is about to be penetrated by the remarkable digital infrastructure. Think about the cost of computing. Over the past two decades, cost has been relentlessly reduced while capacity and performance have dramatically increased. How and when can this trend reach the practice of medicine, where costs often go up with little real improvement?

Inside track: Cardiologist Eric Topol demonstrates a portable ultrasound device made by GE, the Vscan. It uses sound waves to create images of internal organs.

Let’s consider the icon of medicine—the stethoscope draped around the doctor’s neck or in the pocket of a white coat. Invented by René Laënnec in 1816, the stethoscope didn’t see routine use by the medical community for another 20 years. The lag in acceptance reflected the conservative nature of physicians, who objected to having to learn heart sounds and let an instrument get between their healing hands and the patient.

Now, nearly 200 years later, economic forces are greatly slowing the adoption of a powerful replacement for the stethoscope in cardiac medicine. Instead of listening to the heart of a patient, I can now watch it on a device no bigger than a cell phone—a high-resolution miniature ultrasound probe. In fact, in my clinic I have not used a stethoscope to examine a patient’s heart for the past two years.

Why would I listen to the “lub-dub” of heart sounds when I can actually see everything relevant about the heart in real time? Exquisite ultrasound images of the heart muscle—showing its contraction, its thickness, the size of the chambers, the valves, the sac around the heart—can all be obtained within seconds as part of a routine physical examination. I can share and discuss the images with the patient as they are being acquired, put video recordings in the electronic medical record, and send them to the patient or referring physician. The up-front cost of the pocket ultrasound device is about $7,700, but there is no extra cost for an unlimited number of readings.

That makes these small devices a formidable challenge to business as usual in American health care. Each year in the United States more than 20 million echocardiograms (ultrasounds of the heart) are performed, and so are a similar number of abdominal and fetal ultrasound examinations. Each of these diagnostic procedures is done in a dedicated laboratory setting, either in the hospital or in a doctor’s office, with expensive equipment—and a combined professional and technical charge of $1,000 to $2,000. The math is straightforward. If a pocket ultrasound device were incorporated into routine physical exams the same way we use a stethoscope, several billion dollars in unnecessary charges would be saved each year.

Therein lies the rub—and the explanation for why many low-cost innovations are being held back in medicine. Those savings would represent a critical hit to revenue for doctors and hospitals. It’s not just that doctors, like those who refused to use the stethoscope, are intrinsically conservative. The American health-care model of billing “medicine by the yard” creates economic disincentives to cost-saving technology. In contrast, pocket high-resolution ultrasound has been rapidly adopted and hailed as a breakthrough in countries such as India, China, and Brazil.

This represents just a single, simple example of how frugal innovation—the idea of coupling engineering creativity with lower costs—could be achieved if patient care in the United States were not determined by reimbursement rules. We now have wireless sensors that can help us diagnose sleep apnea by capturing all the relevant data for sleep studies—respiratory rate, oxygen saturation of the blood. The data can easily be captured for less than $100, right in a patient’s home. But instead, the medical community keeps using $3,000-per-night hospital sleep labs to make the diagnosis.

I believe a great inflection is coming in medicine: advances in technology will finally help us override the reimbursement issue and topple the economic models that physicians, insurers, and hospitals still cling to. This moment will arrive as medicine is opened to the digital infrastructure of mobile wireless devices, pervasive connectivity, ever-expanding bandwidth, cloud and supercomputing power, and the Internet. Superimposed on these digital capabilities are the ones specific to health care—genomic sequencing, biosensors, advanced imaging, and health information systems. It will all lead to what I call “high-definition man”: a panoramic, granular profile of an individual’s molecular biology, physiology, and anatomy.

Medicine, in short, has the potential for better technology at a much lower price, but don’t look to the medical profession, government, or the life-sciences industry to make the change on its own. I believe the change will come when consumers demand it. The Arab Spring and the Occupy Wall Street movement have shown the influence of social networks as a way to express citizens’ demands. Don’t be surprised if health care is occupied next.

Eric J. Topol is chief academic officer of Scripps Health, director of the Scripps Translational Science Institute, professor of genomics at the Scripps Research Institute, and a cardiologist at Scripps Clinic. He is the author of The Creative Destruction of Medicine: How the Digital Revolution Will Create Better Health Care.

Keep Reading

Most Popular

light and shadow on floor
light and shadow on floor

How Facebook and Google fund global misinformation

The tech giants are paying millions of dollars to the operators of clickbait pages, bankrolling the deterioration of information ecosystems around the world.

This new startup has built a record-breaking 256-qubit quantum computer

QuEra Computing, launched by physicists at Harvard and MIT, is trying a different quantum approach to tackle impossibly hard computational tasks.

wet market selling fish
wet market selling fish

This scientist now believes covid started in Wuhan’s wet market. Here’s why.

How a veteran virologist found fresh evidence to back up the theory that covid jumped from animals to humans in a notorious Chinese market—rather than emerged from a lab leak.

protein structures
protein structures

DeepMind says it will release the structure of every protein known to science

The company has already used its protein-folding AI, AlphaFold, to generate structures for the human proteome, as well as yeast, fruit flies, mice, and more.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.