Skip to Content
Uncategorized

Why All Local News Aggregators Seem Destined to Fail

Most local news is an confusing mess; mashing it all into one place doesn’t solve that problem

I have yet to not be disappointed by a local news aggregator, and I consider myself a devoted connoisseur of their consistently unusable incoherence. Everyone wants these things to work – who doesn’t want to know what’s going on in their neighborhood? – so engineers continue to try, and fail, to create one that isn’t awful. The thing is, it’s not technologists’ fault.

Here’s a screenshot for my neighborhood, a suburb of Washington, DC, from web geotagging startup Fwix:

What does any of this even mean?

To be fair, local news doesn’t appear to be Fwix’s main play; even so, their algorithmic approach to it is illustrative of the shortcomings of this approach.

It’s a classic problem of signal and noise. Google News, the important bits of which are entirely automated, has an incredible amount of high-quality signal to play with. Despite the fallout in the media industry, hundreds of outlets are still throwing thousands of the world’s best journalists at the day’s top stories. It’s an embarrassment of riches.

But how can you figure out what stories are relevant in a town or neighborhood when the local media is so thin on the ground? And how do you even define “newsiness” or “relevance” when there’s hardly enough material to allow a user to narrow their interests?

Fixing the local news conundrum

I’m not convinced that local news aggregation can ever work. But if it did, here’s how it would happen.

1. Use humans - yes, humans - to figure out what the good local news sources are.

Google News may be an algorithm, but its supply of high-grade starting material comes from outlets vetted by human beings. Whoever’s in charge of this for local news aggregators always manages to appear to not know what the best sources are. Perhaps all of these startups underestimate the scale of this problem and the resources required to do it well.

2. Use more humans to pick that day’s top stories.

Another heresy, but how else can we guarantee that the day’s top story won’t be incomprehensible gibberish? Compare the Fwix results for my neighborhood to AOL’s human-curated Patch. Patch, at least, presents information I might actually want to read.

AOL’s Patch.com suggests that for local news, human curation is still the way to go

3. Use even more humans to engage with the humans that are making local news.

Who better than local bloggers will know what’s important in a given location? Old-fashioned relationship building would go a long way toward identifying who is knowledgeable in a city and, perhaps, getting them involved in highlighting the most important stories in their area. (A system like NPR’s Argo network seems optimal for this approach.)

4. Recognize that local news is just that – local.

Attempts to create “local news” sites that span the entire country are prima facie problematic. What makes local news interesting and relevant is the very thing about it that resists homogenization – its individual, local character. Yes, Starbucks is ubiquitous, but that’s because Starbucks managed to impose its character on the entire country. A news aggregator, on the other hand, has to reflect the character of every place it purports to cover.

In short, local news is not a problem that’s going to be cracked with an algorithm – or at least, it hasn’t been yet.

Keep Reading

Most Popular

This new data poisoning tool lets artists fight back against generative AI

The tool, called Nightshade, messes up training data in ways that could cause serious damage to image-generating AI models. 

Rogue superintelligence and merging with machines: Inside the mind of OpenAI’s chief scientist

An exclusive conversation with Ilya Sutskever on his fears for the future of AI and why they’ve made him change the focus of his life’s work.

Data analytics reveal real business value

Sophisticated analytics tools mine insights from data, optimizing operational processes across the enterprise.

Driving companywide efficiencies with AI

Advanced AI and ML capabilities revolutionize how administrative and operations tasks are done.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.