Skip to Content

Lithium-Ion Battery Keeps Its Cool

A new chemistry could result in batteries that don’t overheat—opening up new uses, including electric cars.

A new kind of lithium-ion battery holds much more energy than previous versions, while still working well at high temperatures. It could prove useful for hybrid and electric cars, where high-density batteries usually come with safety risks.

Storage mediums: Leyden Energy makes lithium-ion batteries in two formats, for powering consumer gadgets.

Leyden Energy uses a graphite current collector and imide salt in the battery’s electrolyte. These materials enable the battery to last longer and withstand higher temperatures; Leyden has declined to discuss how it achieved higher energy densities.

The company says the battery has an energy density of 225 watt-hours per kilogram. This falls at the high-end range of laptop batteries, and roughly 50 percent higher than lithium-ion batteries used in electric vehicles. The four-year-old startup expects to see its cells used by a tablet PC maker later this year, says Leyden CEO Aakar Patel.

Lithium-ion batteries are widely used in consumer electronics, but design changes are needed to make sure they work safely in electric or hybrid cars. Carmakers are typically forced to use lower-density batteries, and to use electronics and cooling systems to ensure the battery cells don’t run too hot. Tesla Motors, for example, uses batteries that are similar to those found in laptops to power its Roadster sports car. The company uses liquid cooling and thermal management electronics and software to prevent overheating and other problems.

A cathode material such as lithium-iron phosphate is sometimes used for electric vehicle batteries because it can withstand high temperatures. The trade-off is that it has a relatively low energy density—around 140 watt-hours per kilogram. 

Leyden focuses on the electrolyte and current collector, because the two affect the performance of the cathode and anode and help to determine the longevity and stability of a battery, says Patel. The results are batteries that work just as well in temperatures up to 60 °C, he adds.

Leyden’s battery replaces lithium hexafluorophosphate, one of the components of a lithium-ion battery, with imide salt. Unlike lithium hexafluorophosphate, it does not react with water inside the battery cell, a reaction that significantly degrades the cycle life of a battery. Lithium hexafluorophosphate also starts to decompose at room temperature and loses its effectiveness more significantly when the temperature hits 55 °C. Imide salt doesn’t start to decompose at higher temperatures.

But imide salt can cause trouble by corroding the aluminum current collector that is typically found in a battery cell. Graphite makes a good substitute because it is immune to this assault. “The key advance for Leyden is not the electrolyte. Their magic is, they are not using aluminum as the current collector,” says Venkat Srinivasan, a scientist at the Lawrence Berkeley National Laboratory who has seen the company’s technology. “This change allowed them to change the electrolyte.”

Patel says the batteries could use air cooling rather than liquid cooling, which would make them cheaper and lighter. The company is also developing battery management electronics and software to prevent overcharging or undercharging, problems that can compromise battery life, he says. Leyden recently received a $2.96 million grant from California on a project to produce 10 car battery packs per month.

“Leyden’s cell technology presents a very real advantage for a vehicle battery pack in terms of thermal management, life-cycle performance, and energy density,” says Brian Wismann, director of product development at Brammo, a company that is developing electric motorcycles and is interested in using Leyden’s technology.

Leyden’s new technology will first show up in laptop battery. The company says these batteries will achieve over 1,000 charge and discharge cycles, compared with 300 cycles from a typical laptop battery, and will have a three-year warranty instead of the usual one-year warranty.

Keep Reading

Most Popular

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

pig kidney transplant surgery
pig kidney transplant surgery

Surgeons have successfully tested a pig’s kidney in a human patient

The test, in a brain-dead patient, was very short but represents a milestone in the long quest to use animal organs in human transplants.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

thermal image of young woman wearing mask
thermal image of young woman wearing mask

The covid tech that is intimately tied to China’s surveillance state

Heat-sensing cameras and face recognition systems may help fight covid-19—but they also make us complicit in the high-tech oppression of Uyghurs.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.