Skip to Content

Superconducting Niobium Chip Smashes Silicon Power Consumption Standards

A superconducting logic chip with a clock speed of 6 GHz beats silicon energy efficiency by two orders of magnitude

When it comes to energy efficiency, today’s computers eat up some eight orders of magnitude more than the theoretical minimum. Clearly, there’s room for improvement.

Today, Quentin Herr and pals at Northrop Grumman Systems in Baltimore reveal a superconducting logic device that uses 300 times less power than conventional silicon chips. That’ll be a shock to chip-makers whose attempts at energy efficiency improvements pale in comparison.

The laws of physics help, of course. The power dissipated by a conventional transistor depends on its size and on the material from which it is made.

By comparison, the energy dissipated by the superconducting equivalent, the Josephson junction, is determined only by thermal noise, the system being entirely free of the troublesome resistance that eats up energy in conventional devices.

To exploit this, Herr and co developed and built a new type of device known as a reciprocal quantum logic chip. Their superconducting chip is made of niobium, operates at 4.2 kelvin and consists of 1600 Josephson junctions .

They say it can operate at clock speeds of 6 Ghz with a 6 mW power supply, that faster speeds are possible and that this performance can scale to chips with a million junctions. And it does it with a bit error rate of less than 10^-40. That’s practically nothing.

But the jaw dropper is the power consumption which is only three orders of magnitude above the theoretical limit.

That isn’t the wall plug power consumption, of course, since the hefty cost of cooling has to be taken into account. But even when it is, Herr and co say the new device outperforms silicon power consumption by a factor of 300.
That makes superconducting logic a tempting option for high end computing, for which energy bills are a considerable cost. In 2007, US Environmental Protection Agency calculated that servers and data centres in the US eat up some 12 GW of power, equivalent to the output of 25 power plants. Cutting that by a factor of 300 would save a few dollars.
Niobium also offers an interesting extra. It is naturally radiation hard meaning that these chips might be particularly well suited to operating in space or other highly radioactive environments. That’s the kind of thing that can help to generate military funding. Indeed, Herr and co’s work was funded in part by the Defense MicroElectronics Activity, a military research organisation based in Sacramento.
Interestingly, the device might also be easily converted to work in the quantum computing regime, simply by cooling it down to a few millikevin. That could make it a useful stepping stone towards quantum technologies.
That this technology has come out of Northrop is something of a surprise. This is a company that makes the Global Hawk UAV and the B-2 bomber along with many other military technologies. However, Herr’s work suddenly makes it a player in the world of next generation computing. It’ll be interesting to see where this goes
Ref: Ultra-Low-Power Superconductor Logic
You can now follow The Physics arXiv Blog on Twitter

Deep Dive


Maximize business value with data-driven strategies

Every organization is now collecting data, but few are truly data driven. Here are five ways data can transform your business.

Modern security demands an empathy-first approach to insiders

While attention is often focused on threats from outside the organization, employees too can pose a risk to security—even inadvertently.

The book ban movement has a chilling new tactic: harassing teachers on social media

Educators who stand up to conservative activists are being harassed and called “groomers” online, turning them into potential targets for real-world violence.

OpenAI is ready to sell DALL-E to its first million customers

But the company has had to rush out fixes to the image-making model’s worst flaws to do so.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.