Skip to Content
Uncategorized

The Tricky Topic of Science on the International Space Station: A Case Study

The trials and tribulations of a Japanese X-ray telescope on the ISS make for interesting reading

The International Space Station is an extraordinary achievement. It is a unique observatory and laboratory, permanently crewed by at least six astronauts. And it is huge: covering an area the size of a football field and with the volume of a 5 bedroom house. It is also the most expensive object ever built, with a total price tag of a cool $100 billion.

So you’d imagine that it would have enormous scientific potential. After all, it operates in a unique environment offering conditions that are not easy to create on Earth. Scientists ought to be clamouring to get their experiments on board. Right?

Not quite. Operating on the station is hard and today we get a unique insight into just how tough it is thanks to Hiroshi Tsunemi at Osaka University in Japan and several pals, who publish an account of their experience testing an X-ray camera on board the ISS.

X-ray cameras have improved in leaps and bounds in recent years thanks to the development of CCDs that can detect X-rays and so produce digital X-ray images. Many dentists now use X-ray CCDs as a matter of routine.

So putting one in space to look at X-ray sources in the sky is a thoroughly good idea. Many groups have done it on various orbiting observatories and it’s fair to say that these cameras have changed the nature of x-ray astronomy,

So back in the 1990s, the Japan Aerospace and Exploration Agency decided to test the technology by strapping it to the back its laboratory on the ISS. The camera, called MAXI/SSC (Monitor of All-sky X-ray Image/Single Slit Camera), was originally scheduled to fly in 2003 but the Columbia disaster meant it didn’t get up until 2009.

Once up, the engineers discovered that significant flaring occurs in the images when the Sun is close to the field of view. So the camera cannot be used at these times.

Neither can it be used when the station passes through the South Atlantic Anomaly, the area where the Earth’s Van Allen Radiation belt comes closest to the surface.and where radiation levels are so high that the cameras have to be switched off. The ISS passes through this region ten times a day.

The result is that the MAXI/SSC is switched off most of the time.

Then there is the problem of taking dark images, pointing the camera at the night side of the Earth to see how much background noise comes from non-x-ray sources. This is essential for analysing the data but just cannot be done on the ISS.

There are advantages in being on the station, however. When Tsunemi and co discovered a problem with the way the camera downloaded data, they were able to persuade a friendly astronaut to fix it “by adding an extra router”.

Despite these various problems, MAXI/SSC has begun to create an image of the X-ray sky (shown above). The different colours correspond to X-rays sources of different energies and the biggest object is the Vela supernova remnant.

One curious feature is the arcs in the image, particularly in the northern hemisphere. Tsunemi and co say they don’t know where this is coming from. Perhaps more observations will help find the source but without a good measure of background noise, it will be tough to dissect.

Science in space is a difficult business at the best of times. It doesn’t look to be any cheaper, quicker or easier on the ISS.

Ref: arxiv.org/abs/1101.5673: In Orbit Performance Of The MAXI/SSC Onboard The ISS

Deep Dive

Uncategorized

Five poems about the mind

DREAM VENDING MACHINE I feed it coins and watch the spring coil back,the clunk of a vacuum-packed, foil-wrappeddream dropping into the tray. It dispenses all kinds of dreams—bad dreams, good dreams,short nightmares to stave off worse ones, recurring dreams with a teacake marshmallow center.Hardboiled caramel dreams to tuck in your cheek,a bag of orange dreams…

Work reinvented: Tech will drive the office evolution

As organizations navigate a new world of hybrid work, tech innovation will be crucial for employee connection and collaboration.

lucid dreaming concept
lucid dreaming concept

I taught myself to lucid dream. You can too.

We still don’t know much about the experience of being aware that you’re dreaming—but a few researchers think it could help us find out more about how the brain works.

panpsychism concept
panpsychism concept

Is everything in the world a little bit conscious?

The idea that consciousness is widespread is attractive to many for intellectual and, perhaps, also emotional
reasons. But can it be tested? Surprisingly, perhaps it can.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.