Skip to Content

The Science of a Sparkling Shave

A German company hopes a synthetic diamond material, engineered at the nanoscale, becomes a shaver’s best friend.
August 13, 2010

For the last few months, Andre Flöter has been shaving with a diamond-tipped razor blade.

Cutting edge: These photos show the stages in which GFD, a German company, takes a carbide blade, adds a coating of nanocrystalline diamond, and sharpens it with ions.

He’s not some nouveau riche flaunting the newest kind of bling. He’s the founder of GFD, a German company that for the last seven years has been selling blades that are coated with synthetic diamond and used for industrial purposes–such as medical scalpels and instruments that cut plastic sheeting. Now Flöter hopes to use the exceptional hardness of diamond to crack the multibillion-dollar market for consumer razor blades.

Seated in a café in Mannheim, Germany, a couple hours north of his office in Ulm (Albert Einstein’s birthplace), Flöter whips out a plastic-handled razor that looks like ones you have at home. But inserted into this one is a prototype of GFD’s diamond-tipped blades.

He demonstrates against his own arm hair how it cuts as smoothly as a regular razor. He hands it to me so I can try, and it feels like my regular razor. But one major difference, Flöter says, is that his diamond-tipped blade should last several years rather than a few weeks.

The body of the blade is made of tungsten carbide, a dense metal compound, and seems just like a typical commercial razor blade, except it is a little heavier and has a darker metallic color. The coating of synthetic diamond–carbon manipulated at the nanoscale–in the tip doesn’t make it look shiny at all.

Flöter won’t reveal details of how GFD creates a film of synthetic diamond. He’s more forthcoming about how the company’s blades, once made, are sharpened. The engineers take dozens of blades and stand them upright in a vacuum chamber. Then they hit the blades with ions of oxygen or chlorine gas that has been excited to a plasma state with an electric field. The process is akin to using extremely fine-grained sandpaper as a sharpener.

The resulting blade has a “radius of curvature”–the tiny edge of the blade, which is actually rounded at the microscopic level – of about 50 nanometers. That’s about 10 times sharper than the blades GFD sells for plastic sheet cutting. Flöter gives me his razor again: Not only does it cut when I press against my skin, as I would during a normal shave, but even just grazing the tips of my arm hair, the blade cuts with no effort at all.

To be sure, blades made this way would make razors much more expensive. But because they could last much longer than a cheap disposable razor, the blades could be cost-effective in the long run, perhaps paying for themselves in about a year, GFD hopes. First, though, Flöter needs a blade manufacturer to partner with his seven-employee company. If all goes well, his blades could hit the market within two or three years, he says.

It wouldn’t be the first time diamond blades were marketed; Schick used to sell a razor it called the FX Diamond. But it didn’t cost much more than standard blades; Flöter says Schick didn’t produce a substantially harder or longer-lasting blade because it didn’t use a pure diamond coating and didn’t sharpen it the way GFD does. A Schick spokeswoman declined to comment on GFD’s technology.

Keep Reading

Most Popular

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

digital twins concept
digital twins concept

How AI could solve supply chain shortages and save Christmas

Just-in-time shipping is dead. Long live supply chains stress-tested with AI digital twins.

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

computation concept
computation concept

How AI is reinventing what computers are

Three key ways artificial intelligence is changing what it means to compute.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.