Skip to Content
Uncategorized

Self-Powered Nanotechnology Closer to Reality

Researchers report a major boost in energy-harvesting devices.

This Tuesday at the Materials Research Society spring meeting in San Francisco I sat down with Zhong Lin Wang, director of the center for nanostructure characterization at Georgia Tech. We featured Wang’s work on self-powered nanosensors in our “10 Emerging Technologies” issue last year. The payoff from this concept would be huge: nanoscale sensors are exquisitely sensitive, very frugal with power, and, of course, tiny. They could be useful for detecting molecular signs of disease in the blood, minute amounts of poisonous gases in the air, and trace contaminants in food. Eliminating the batteries needed to drive these devices would make it possible to fully miniaturize them.

Wang has been developing devices based on nanowires that exhibit piezoelectricity. That is, they generate a voltage when they’re bent. He has been integrating these nanowires into devices that can harvest energy from biomechanical motion–including the running movements of a hamster on a wheel or the tapping of a finger–and use it to power a small sensor.

The problem with these devices has been getting a significant voltage out of them. This Tuesday morning, Wang presented recent data showing he has boosted the voltage produced by his nanowire devices by two orders of magnitude. The new design integrates millions of piezoelectric zinc-oxide nanowires in layered arrays on a plastic backing. Wang has coupled these devices with pH and UV-light sensors and demonstrated that they can power the sensor to take a measurement when stressed. Earlier this month, in the journal Nature, Wang reported a flexible device that produces 1.2 volts when it’s stressed; he says he has now made devices that produce 2.4 volts. This is enough to start thinking about integrating a charge-storage device that will make it possible to regulate the voltage going into the sensors for better control of measurements. Indeed, Wang says, that’s his next step.

Wang says he proposed the idea of self-powered nanotechnology based on these energy-harvesting devices in 2006, and at the time, there were many skeptics. Now others have started to replicate his results and other groups in academia and even at Samsung are starting their own research in the area.

Deep Dive

Uncategorized

Embracing CX in the metaverse

More than just meeting customers where they are, the metaverse offers opportunities to transform customer experience.

Identity protection is key to metaverse innovation

As immersive experiences in the metaverse become more sophisticated, so does the threat landscape.

The modern enterprise imaging and data value chain

For both patients and providers, intelligent, interoperable, and open workflow solutions will make all the difference.

Scientists have created synthetic mouse embryos with developed brains

The stem-cell-derived embryos could shed new light on the earliest stages of human pregnancy.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.