MIT Technology Review Subscribe

Awards Showcase Stunning Imaging Technology

Smoother than silk polymers, 100 year old blood vessels and the head of a mouse embryo revealed in exquisite detail.

The Wellcome Trust announced the winners of its annual Wellcome Image Awards last night in London, highlighting 19 stunning images that reveal nature’s often hidden beauty.

We describe a few tech-worthy selections from the list below. For the full slideshow–along with information on how the images were made and why they were selected–click here.

Advertisement
Synthetic polymers used to coat a drug, which are used to
slow release of a drug or to target it to part of the digestive
tract.

Of the image above, the Wellcome Image site says:

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

Polymers play an important role in reducing side-effects of drugs, as well as the number of times a patient needs to take a medication. Scanning electron micrograph images are taken in black and white and are colored later. The orange spheres contain the drug and the encapsulating co-polymers are coloured blue.

Judge Catherine Draycott says this image was picked because “it doesn’t look like a natural image. It doesn’t look as though it could possibly come from a microscope – it looks as though it must be computer-generated…The image really shows what technology can do in targeting drugs to specific purposes. This system is designed to delay the release of the drug that is contained in the smaller particles until it reaches the large intestine, where it will treat inflammatory bowel disease.”

A three-dimensional reconstruction of an embryonic mouse head,
age 14.5 days.

This image above was created using high-resolution episcopic microscopy. The Welcome site says:

Samples are embedded in plastic stained with a fluorescent dye. Each time a fine section of the sample is sliced away, an image of the remaining sample is captured. These images are then put together to create a 3D animation of the external and internal structure of the sample.

Of the mouse image, Judge Gonzalo Blanco says “from the point of view of developmental biology, this new tool can illustrate much more effectively the impact that certain mutations may have on the anatomy of the mouse embryo. Usually you can only see a section, but by exposing the same reconstruction through different filters, you can actually see in 3D view – from many angles – the developmental defect.”

Capillaries that connect arteries and veins.

The last image was captured from a slide prepared in the 1980s and acquired from a retired histologist.

According to the Wellcome Image site:

Advertisement

The cillary body in an ox’s eye has been dissected away from the lens and laid onto the slide. The bright red colour of the capillaries is visible owing to a dye – likely to be carmine dye – which was injected into the artery that supplied the capillaries. Due to the thickness of the sample, this image was created from a stack of images that were combined to give the structure a 3D appearance.

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement