Skip to Content
Uncategorized

First Free-Electron Light Source on a Chip

Forcing electron beams to emit light could change nanophotonics forever.

Free-electron lasers are the must-have gadgets for all self-respecting modern laboratories. They work by sending a beam of electrons into an undulating magnetic field, called a wiggler. This changes the trajectory of the electrons, forcing them to emit coherent photons. That’s cool, but their real flexibility comes from their tunability. Change the energy of the incident electrons or fiddle with the wiggler, and you can change the wavelength of the laser light they produce.

There’s one problem though. Wigglers are big, complex devices that are expensive to build and difficult to operate and maintain. And that means that only the biggest and best-funded labs can afford to run them.

Now Nikolay Zheludev at the University of Southampton in the U.K. and a few mates are doing for the free-electron laser what Shockley, Bardeen, and Brattain did for the vacuum tube: they’re turning it into a solid-state device that can be built into a single chip.

Here’s how. They first create a slab of material consisting of alternating layers of gold (a metal) and silicon dioxide (a dielectric). They then drill a tiny hole–just 700 nanometers across–through the slab. Finally, they fire a beam of electrons through the hole. Instead of experiencing an undulating magnetic field, the electrons experience an alternating dielectric environment that has the same effect–it forces them to emit photons. And crucially, the team can tune the wavelength of the photons by changing the energy of the incident electrons.

Zheludev and his pals have already built a prototype that produces light in the range of visible to infrared with an emission intensity equivalent to 200 watts per square centimeter.That’s an impressive device that could make a big impact in nanophotonic devices, in optical memory, and in next-generation displays.

But there’s work to do yet. The light emitted by this device, which Zheludev calls a light well, is incoherent because the photon conversion process is relatively inefficient (the number of photons produced per incident electron is just 10^-5).So Zheludev’s next job will be to improve this efficiency by reducing the energy lost to surface plasmons and the light lost inside the material slab. If he can improve the efficiency enough, lasing may become possible.

When that happens, Zheludev and his colleagues will have a device on their hands that could revolutionize lasing. In the meantime, they’ll just have to settle for a revolution in nanophotonics.

Ref: arxiv.org/abs/0907.2143: The Light-Well: A Tuneable Free-Electron Light Source on a Chip

Deep Dive

Uncategorized

Embracing CX in the metaverse

More than just meeting customers where they are, the metaverse offers opportunities to transform customer experience.

Identity protection is key to metaverse innovation

As immersive experiences in the metaverse become more sophisticated, so does the threat landscape.

The modern enterprise imaging and data value chain

For both patients and providers, intelligent, interoperable, and open workflow solutions will make all the difference.

Scientists have created synthetic mouse embryos with developed brains

The stem-cell-derived embryos could shed new light on the earliest stages of human pregnancy.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.