New Treatments for Brain Injury
Developing new treatments for brain injury has been notoriously difficult. Perhaps, new research suggests, scientists have been targeting the wrong kind of brain cells. Two studies presented Sunday at the Society for Neurosciences conference in Washington, DC, show that astroglial cells, a type of brain cell traditionally thought to support neurons, may provide an important target for new therapies.
While some of the neural damage that accompanies traumatic brain injury, such as that caused by car accidents or explosions, results from the impact of the accident, most of it unfolds over days, weeks, and perhaps even months after the injury, triggered by a chemical cascade that, in turn, triggers inflammation and cell death. Scientists would ideally like to develop a treatment that prevents this slow degeneration, but decades of research have so far left them empty-handed.
The red-blood-cell booster hormone erythropoietin (EPO), used therapeutically to treat anemia and illegally by endurance athletes, has unexpectedly emerged as a promising candidate over the past few years. Several studies in animal models show that it can protect against the cell death that accompanies traumatic brain injury in animals. Eli Gunnarson, of the Karolinska Institute, in Sweden, has now shown that EPO can protect against the swelling in traumatic injury as well, one of the most potentially damaging consequences of both brain trauma and stroke. Gunnarson’s group found that the drug works by targeting the astroglia (also known as astrocytes), closing down a channel that normally imports water into these cells. “People have underestimated the importance of astrocytes,” says Gunnarson.
In a second study, David Meaney and his colleagues at the University of Pennsylvania, in Philadelphia, found that astroglia receive a flood of calcium right after injury, which previous research suggests is toxic to neurons. They then found a class of compounds that could block the flood by inhibiting a specific receptor on the cells’ surface, suggesting a new target for drug development.
Meaney adds that neurons may have proved a poor target for brain-injury therapies in the past because drugs that “block these receptors might also inhibit important physiological functions.” He says that the same may not be true of astroglia because of their different role in the brain.
Keep Reading
Most Popular

Meta has built a massive new language AI—and it’s giving it away for free
Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

The gene-edited pig heart given to a dying patient was infected with a pig virus
The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging
The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun has a bold new vision for the future of AI
One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.
Stay connected

Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.