Skip to Content

Silicon-Based Spintronics

First of its kind computing prototype.
August 15, 2007

Today’s computers work by moving and storing electronic charge. But manipulating another property of electrons, their quantum-­mechanical “spin,” would be faster and take far less energy. Researchers have been working on “spintronics” for years, and now electrical engineers at the University of Delaware and at Cambridge ­Nano­Tech in Cambridge, MA, have made the first proto­type device that measures spin in silicon.

Spin chip: An array of one-¬millimeter-square silicon spintronic devices sits in a chip carrier.

Electron spins come in two directions, up and down, which could represent the 1 and 0 of binary computation if spin could be controlled and detected. In the proto­type, energized electrons first hit a magnetic cobalt-iron layer, which filters out electrons with down spin. The remaining up electrons pass through a 10-micrometer silicon layer and hit a detector consisting of a nickel-iron layer on top of a copper layer; all the layers sit on a silicon substrate. “It’s a very ingenious scheme to electrically generate and transport spins in silicon, [to] electrically detect the spins, and doing all of this on a chip,” says David Awschalom, a physicist who studies semi­conductor spintronics at the University of California, Santa Barbara.

Keep Reading

Most Popular

Geoffrey Hinton tells us why he’s now scared of the tech he helped build

“I have suddenly switched my views on whether these things are going to be more intelligent than us.”

Meet the people who use Notion to plan their whole lives

The workplace tool’s appeal extends far beyond organizing work projects. Many users find it’s just as useful for managing their free time.

Learning to code isn’t enough

Historically, learn-to-code efforts have provided opportunities for the few, but new efforts are aiming to be inclusive.

Deep learning pioneer Geoffrey Hinton has quit Google

Hinton will be speaking at EmTech Digital on Wednesday.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.