Skip to Content

Stem Cells Repair Blood Vessels

A new method to boost growth of blood vessels with stem cells could improve cell therapies for diabetes and heart disease.

An efficient new method to generate what appears to be a novel type of stem cell could be a boon to diseases linked to lack of blood flow. Scientists in Massachusetts and Florida have developed a way to coax embryonic stem cells into a more adult form of stem cell that has the potential to form blood vessels. The new type of cells helped repair tissue in animals that had had heart attacks or eye damage due to diabetes.

Blood flows: Stem cells restore blood flow to a mouse whose blood vessels had been blocked. This series shows changes in blood flow in the injured leg, circled in red, over 30 days after receiving an injection of stem cells. The top image is 6 days postinjection, the bottom image is 30 days postinjection. Blue indicates no blood flow, with increasing blood-flow intensity indicated by green, yellow, and red.

“This is a significant achievement which may translate into therapy for a wide variety of disorders of insufficient blood vessels,” says Amish Raval, a cardiologist at the University of Wisconsin, Madison, who was not involved in the research.

The tissue damage that accompanies many diseases, including the ulcers that occur in diabetes and the heart-muscle damage associated with cardiovascular disease, is linked to an inadequate supply of blood. Researchers are currently trying to determine whether adult stem cells derived from bone marrow can boost blood flow in these diseases by triggering growth of new vessels. (See “Can Stem Cells Cure Heart Disease?”)

In the new study, scientists developed a way to turn embryonic stem cells into stem cells that are an earlier and thus more plastic form than the adult stem cells derived from bone marrow. Robert Lanza, vice president of research and scientific development at Advanced Cell Technologies, in Worcester, MA, and his collaborators then injected these stem cells into animals with various types of tissue damage: damaged retinas due to diabetes, experimentally induced heart attack, or lack of blood flow to the limb. The cells traveled to the injury site and repaired damaged blood vessels within 24 to 48 hours, according to findings published online in Nature Methods.


  • View a video of stem cells repairing blood vessels in a mouse.

“These cells have really been able to do a lot of novel things in terms of tissue injury and repair,” says Anthony Atala, director of the Institute for Regenerative Medicine, at Wake Forest University.

Experts say that the cells, which are derived from existing embryonic stem-cell lines, can be quickly grown in large quantities; in contrast, adult stem cells must be harvested from donors, a process that can take weeks. “What makes this study exciting is that the methods to culture … these cells do not require human or animal serum and can be scalable for large-volume therapeutic delivery,” says Raval. “In other words, this could become an ‘off the shelf’ product to treat human conditions where the blood supply is poor.”

Lanza has high hopes for the stem cells and has numerous collaborations in the works. He’s exploring the cells’ potential to prevent the progression of atherosclerosis, to treat stroke, and to be used as a starter ingredient to create “universal donor” blood cells for blood transfusions.

While exciting, much work remains to be done, cautions Raval. Among other challenges, he says, researchers still need to “determine the ability of these cells to avoid immune rejection.” And, he points out, anyone using cells derived from embryonic stem cells will have to “get past the political and ethical issues.”

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.