Skip to Content

Recording a Cell’s Dying Gasp

A device that detects electrical signals could be used for chemical monitoring.

Scientists in the United Kingdom have developed a way to monitor the health of individual cells by recording their electrical activity in much the same way that an electrocardiogram (EKG) monitors the heart. They say that the technique could revolutionize the way we test drugs and carry out environmental sensing.

Life signs: Superconducting electrodes (pink) act like leads of an electrocardiogram, measuring the electrical activity of an individual yeast cell (yellow blob).

Using extremely sensitive equipment, the scientists have captured the last pulse of electrical activity in a cell, the equivalent of a final heartbeat, before the cell died.

To stay alive, cells need to maintain an electrical flow of charged particles, called ions, through their cell membranes. Detecting the flow of these ions can be used to help gauge the health of that cell, says Andre Geim, a professor of physics at University of Manchester, in the United Kingdom.

But measuring electrical activity at this level requires extremely sensitive equipment, says Geim. “To reliably detect the charge of one ion, you need a sensitivity of just a few percent of that charge.”

While electron microscopes offering this level of resolution do exist, they require cryogenic temperatures in order to operate, making it impossible to study the activity of living cells. Instead, Geim and his colleagues modified a sensor usually used to measure charge in superconductors so that it could be used to study a single cell at room temperature. The device consists of an array of semiconductor electrodes spaced very close together to form a cross, upon which a cell is placed. The tip of an atomic force microscope, made out of a semiconductor material designed to measure charge from the electrodes, is placed on top of the cell.

“Essentially, it is a semiconductor cross that is specially arranged to have a very high conductance,” says Geim. This means that the arrangement can not only detect minute amounts of charge, but it can also function like leads of an EKG by recording differences in electrical activity at different points across the cell’s membrane. So although each electrode may detect more than an individual electron’s worth of charge, the variations between each of their readings make it sensitive enough to detect far smaller quantities.

The researchers initially set out to record ion flow in a cell. After attempts to record ionic activity of a single yeast cell were unsuccessful, they doused the cell in ethanol to try to elicit a response.

The trick worked: the cell finally showed some electrical activity. But the ethanol also poisoned and killed the cell, allowing the researchers to record the cell’s ultimate demise. “It was probably the last gasp of a dying cell,” says Geim. “Life in the eyes of a physicist is the motion of charges.”

Still, Geim is upbeat about the results. The experiment showed that the device could detect ion flow, down to the resolution of about 10 ions. Measuring the flow of individual ions should also be possible, but it would require the use of a more sensitive semiconductor material in the electrodes, he says.

Ultimately, Geim believes that it will be possible to record different telltale patterns of electrical activity from different cells to indicate responses to drugs or environmental chemicals. The equipment could easily be made into a portable device, and it could be useful for sensing harmful substances, says Geim. “Some cells could be used as cellular canaries for detecting changes in the environment.”

Keep Reading

Most Popular

This new data poisoning tool lets artists fight back against generative AI

The tool, called Nightshade, messes up training data in ways that could cause serious damage to image-generating AI models. 

Rogue superintelligence and merging with machines: Inside the mind of OpenAI’s chief scientist

An exclusive conversation with Ilya Sutskever on his fears for the future of AI and why they’ve made him change the focus of his life’s work.

The Biggest Questions: What is death?

New neuroscience is challenging our understanding of the dying process—bringing opportunities for the living.

How to fix the internet

If we want online discourse to improve, we need to move beyond the big platforms.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.