Skip to Content

Neuron on a Chip

Tiny changes in the way electrical signals move through neurons are the basis of learning and memory–and of many brain pathologies. But it has been difficult for neuroscientists to observe these changes in much detail. Now, researchers at Harvard University have created a tool with unmatched sensitivity: silicon nanowires that amplify very small electrical signals from as many as 50 places on a single neuron. Existing methods can pick up signals from only one or two places.

Fifty nanoscale devices on a chip measure electrical signals traveling along a single neuron. (Credit: Lieber Group, Harvard)

Chemist Charles Lieber and coworkers assemble nano­wires on a silicon chip, deposit electrical leads that connect to them, and add protein molecules that promote and control neuron growth. Finally, they seed the chip with rat neurons and wait four to ten days for them to grow. The proteins provide a path for the neuron’s growth along the chip, ensuring that it makes contact with the nanowires. The technology could eventually help brain scientists understand the underpinnings of learning, memory, and disease.

Keep Reading

Most Popular

Europe's AI Act concept
Europe's AI Act concept

A quick guide to the most important AI law you’ve never heard of

The European Union is planning new legislation aimed at curbing the worst harms associated with artificial intelligence.

Uber Autonomous Vehicles parked in a lot
Uber Autonomous Vehicles parked in a lot

It will soon be easy for self-driving cars to hide in plain sight. We shouldn’t let them.

If they ever hit our roads for real, other drivers need to know exactly what they are.

supermassive black hole at center of Milky Way
supermassive black hole at center of Milky Way

This is the first image of the black hole at the center of our galaxy

The stunning image was made possible by linking eight existing radio observatories across the globe.

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.