Skip to Content

Toward a High-Definition YouTube

The world’s most advanced Internet backbone is not only 10 times fatter–it also pushes the envelope on reliability
October 25, 2006

Sometime in early December, the world’s most advanced high capacity Internet backbone–capable of transmitting up to 100 gigabits per second–will have its first major segment go live between Chicago, New York, and Washington, aiding health care and other research while laying the groundwork for the day when, as one researcher put it, “High Definition YouTube” becomes available to the masses.

For now, the new network will only be available through Internet2, a university-led collaboration based in Ann Arbor, MI, that runs a nationwide Internet backbone connecting more than 46,000 research, education, and government institutions. But Internet2 technology tends to be five to seven years ahead of commercial offerings, and previous Internet2 efforts pioneered such things as videoconferencing. High hopes are riding on this latest initiative. In addition to having added capacity, it will be more controlled and reliable–a key attribute for sensitive applications such as telesurgery.

“The infrastructure itself is going to be pretty unique in that we are going to have total control of it,” says Steve Cotter, director of network services for Internet2. “We will be able to control how the network is used, when it is provisioned. This is particularly important to the research community.” The new network could make it far easier for a pathology specialist in New York, for example, to control a microscope as it pans across details of a biopsy sample in Los Angeles while he or she is viewing details of a tumor biopsy. Ultimately, it could make actual remote surgery–in which the New York doctor operates robotic equipment that cuts the tumor out of the Los Angeles patient–a common practice.

“The big problem with health care using the Internet for actual clinical practice is that the quality of service is quite questionable,” says Mike McGill, manager of the health-sciences initiative for Internet2, adding that this problem extends even to the existing high-capacity Internet2 network. “If you were actually doing remote telesurgery or telepathology or tele-anything, there is a chance you can get congestion on the network. The new network allows us to dedicate portions of the network to specific activities, so the quality of service people can expect on the network is clearly going to be better, and will allow them confidence.”

McGill adds that of 120 medical schools in the United States, 112 are members of Internet2. That means that the necessary Internet connections will soon be available in the medical centers and teaching hospitals connected to these medical schools. And thanks to a $60 million annual Federal Communications Commission initiative, Internet2 is working to support connecting smaller and rural hospitals to the network too, so that advanced diagnostics and other services can be provided remotely. The goal is to form a ubiquitous advanced health-care network that will improve general access to top-quality services and research.

The new network will initially have ten 10-gigabit circuits–upgradable to 40 gigabit circuits—each on the entire 20,920 kilometer network. It will be capable of routinely transmitting 100 gigabits of data per second–which could rise to 400 gigabits if the higher-capacity circuits are implemented. But even the 100-gigabit network is 10 times fatter than the current Internet2 network, which was first created in 1998. (By comparison, a typical residential cable modem can transmit about one megabit per second, or 1/100,000th the speed of the new network.)


The December East Coast rollout is just the beginning. By mid 2007, the network will be available to all participating research institutions nationwide. The network is being implemented through a partnership with Level 3 Communications, one of the largest providers of wholesale dial-up service in North America. Level 3 provides Internet connectivity to broadband subscribers through partnerships.

To be sure, much of the new Internet2’s capacity will be gobbled up by big science. Physicists need it to send around data from atomic collisions in particle accelerators, such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, where researchers are trying to figure out what the universe looked like in the first moments of its creation. The network will also allow radio telescopes to be linked in real time, essentially turning them into one giant telescope.

But most of the applications are yet to be determined. How hospitals and other research institutions actually use the network will be completely up to them. “We are trying to throw out a network with these sorts of capabilities and see what people come up with in terms of using it,” says Cotter. “It’s kind of up to the users. We are putting this network out there and want researchers to use it as a test bed.” He adds, “You’ve got YouTube now–maybe [there will be] a High Definition YouTube down the road.”

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.