Skip to Content

The Ultra Battery

A new type of ultracapacitor could eventually have you throwing out your conventional batteries.
February 10, 2006

A breakthrough technology is holding forth the promise of charging electronic gadgets in minutes, never having to replace a battery again, and dropping the cost of hybrid cars. Indeed, the technology has the potential to provide an energy storage device ten times more powerful than even the latest batteries in hybrid cars – while outliving the vehicle itself.

The new technology, developed at MIT’s Laboratory for Electromagnetic and Electronic Systems, should improve ultracapacitors by swapping in carbon nanotubes, thereby greatly increasing the surface area of electrodes and the ability to store energy.

Ultracapacitors, a souped-up version of the capacitors widely used in electronics, have been around for decades. They’re well-known for being powerful, that is, able to quickly absorb and release electricity. But they can’t store much energy so their stored electricity is depleted in a matter of seconds. As a result, they’ve been limited to niche applications, such as providing quick bursts of power in some hybrid transit buses.

Now researchers at MIT have found what they believe is a way to improve the endurance of ultracapacitors several-fold – allowing the devices to retain the power and longevity advantages, while storing about as much energy as the batteries used in hybrids.

The amount of energy ultracapacitors can hold is related to the surface area and conductivity of their electrodes. The researchers have increased surface area by “more than an order of magnitude” by using carbon nanotubes, says Joel Schindall, professor of electrical engineering at MIT and one of the researchers on the project. One square centimeter of conductive plate when coated with the nanotubes has a surface area of about 50,000 square centimeters, compared with 2,000 square centimeters using the carbon in a commercial ultracapacitor today. The highly pure carbon nanotubes are also extremely conductive, which should increase power output over existing ultracapacitors, the researchers say.

The technology may find applications beyond hybrids, too. Ultracapacitors could allow laptops and cell phones to be charged in a minute. And unlike laptop batteries, which start losing their ability to hold a charge after a year or two, they could still be going strong long after the device is obsolete. “Theoretically, there’s no process that would cause the [ultracapacitor] to need to be replaced,” says professor John Kassakian, another of the researchers.

The main hurdle the new technology is likely to face is not technical but economic. “The nanomaterials are probably a hundred or a thousand times more expensive, today, than the materials that we use,” says Michael Sund, spokesperson at Maxwell Technologies, San Diego CA, a maker of commercial ultracapacitors. “The markets that we serve are price-enabled. If our product stored a hundred times more energy, but cost a hundred times more, there might not be any market for it.”

However, the MIT researchers hope that over time, and with help from economies of scale, nanotube ultracapacitors can be made for the same cost as batteries.

The next step is to measure the performance of a device using the carbon nanotubes and to grow the nanomaterials on a flexible substrate that can be rolled into a large-scale ultracapacitor.

Keep Reading

Most Popular

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

computation concept
computation concept

How AI is reinventing what computers are

Three key ways artificial intelligence is changing what it means to compute.

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

We reviewed three at-home covid tests. The results were mixed.

Over-the-counter coronavirus tests are finally available in the US. Some are more accurate and easier to use than others.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.