Skip to Content

Spinach Power

It may sound like something out of a Popeye cartoon, but MIT researchers are building a promising solar cell from spinach. In their Cambridge lab, bioengineer Shuguang Zhang and electrical engineer Marc Baldo shine a laser beam on a chip the size of a postage stamp. Out of a wire electrode hooked to the chip comes electricity – a trickle now, but one day, perhaps, enough to power a cell phone or laptop. Instead of the silicon found in most solar cells, however, this chip uses proteins from plants that have evolved over millions of years to turn sunlight into usable energy.

The advance “is of tremendous importance,” says Peter Peumans, an expert on organic electronics at Stanford University, because solar cells that draw on plants’ natural photosynthetic ability could eventually be lighter, cheaper, and easier to repair than their conventional cousins.

Biological cells removed from plants and connected to electronic hardware typically die within hours. But Zhang and Baldo, collaborating with the University of Tennessee and the U.S. Naval Research Laboratory, took wholesale spinach and harvested just the proteins that absorb photons and generate free electrons during the process of photosynthesis. The researchers bathed the proteins with detergent-like molecules that would keep them working properly on a dry surface for weeks. They then placed the proteins on a gold-coated glass substrate and deposited a semiconductor layer on top to collect electricity.

So far, the chip’s energy efficiency is far lower than that of existing solar cells. But “extensions of these methods could produce very important future energy conversion technologies,” says MIT chemist Timothy Swager. To ratchet up the chip’s efficiency enough that it could power a mobile device, says Zhang, the researchers plan to increase the area of its light-absorbing surface by building layers of proteins on wavy substrates. Zhang predicts the technology could be used commercially in five years.

Keep Reading

Most Popular

AV2.0 autonomous vehicles adapt to unknown road conditions concept
AV2.0 autonomous vehicles adapt to unknown road conditions concept

The big new idea for making self-driving cars that can go anywhere

The mainstream approach to driverless cars is slow and difficult. These startups think going all-in on AI will get there faster.

biomass with Charm mobile unit in background
biomass with Charm mobile unit in background

Inside Charm Industrial’s big bet on corn stalks for carbon removal

The startup used plant matter and bio-oil to sequester thousands of tons of carbon. The question now is how reliable, scalable, and economical this approach will prove.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

AGI is just chatter for now concept
AGI is just chatter for now concept

The hype around DeepMind’s new AI model misses what’s actually cool about it

Some worry that the chatter about these tools is doing the whole field a disservice.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.