MIT Technology Review Subscribe

Putting a New Spin on Computing

Physicists often like to remind people that our simple-minded picture of electrons is woefully naive. Electrons aren’t so much tiny little particles whizzing around an atomic nucleus as they are a kind of fuzzy wave function–a probabilistic distributions of electric…

Physicists often like to remind people that our simple-minded picture of electrons is woefully naive. Electrons aren’t so much tiny little particles whizzing around an atomic nucleus as they are a kind of fuzzy wave function–a probabilistic distributions of electric charge, forming an amorphous cloud. Funny thing, though: physics also tells us that electrons have spin–which is kind of hard to imagine about a probability cloud. But the experimental observations and the math all work out that way, and so there we are. Which brings us to today’s announcement that IBM and Stanford are teaming up to push what could become the next big thing in computing: spintronics. Electrons can spin in one of two ways, conventionally known as “up” and “down,” which indicates the direction of the magnetic field it produce. The phenomenon lends itself to binary systems, i.e. computing; manipulating the electrons’ spin (and hence magnetic field) could offer a new way to store and process informaion.

Spintronics technology is actually already in widespread use; the extraordinary expansion during the 1990s of computer hard drive capacity stems from the development of an IBM-discovered phenomenon called the giant magnetoresistive effect. And spintronic technology is at the heart of magnetic RAM (MRAM) technology which holds the promise of instant-on computing.

IBM is providing seed money for the venture, called The IBM-Stanford Spintronic Science and Applications Center (SpinAps). Stanford scientists will pull their share of the research load, and the two organizations will split the intellectual property. The IBM website talks about future developments such as reconfigurable logic devices, room-temperature superconductors, and quantum computers but says that commercial devices coming from the collaboration are at least five years out.

Advertisement
This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in
This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement