Skip to Content

The New, New Nano Stuff

Boron nitride nanostructures offer tougher alternatives to carbon counterparts.
April 20, 2001

There’s a new nanotube in town, and it’s not based on carbon. Laurence Marks, a materials science professor at Northwestern University, and graduate student Erman Bengü have developed a boron nitride nanomaterial by depositing ions of boron and nitrogen on a hot, electrically charged tungsten surface in a high vacuum.

As they discovered, the resulting yarn-like substance, or “wool,” contains a surprising variety of boron nitride nanostructures, including single-wall nanotubes, spherical fullerenes, cone-shaped “nano horns” and sphere-within-a-sphere “buckyonions.”

“Boron nitride nanostructures have been something of a neglected orphan to carbon,” Marks says. “They’re not better for all applications, but they might be in some instances.”

For starters, boron nitride nanomaterials should withstand higher temperatures than their carbon counterparts and won’t oxidize as readily. This could result in the development of new nanoparticles for coatings that won’t corrode and for machine parts that can better withstand high-heat conditions.

In addition, boron nitride nanotubes are likely to be semiconductors with predictable electronic properties, regardless of their diameter. In contrast, carbon nanotubes can be highly conductive, like metal, or semiconductive, like silicon, depending on how their edges align when they fold themselves into tubes of hexagonal molecules that resemble chicken wire. The problem is that a batch of carbon nanotubes will likely contain a mixture of both conducting and semiconducting tubes that are hard to separate.

Accidental Advance

Why were the scientists working with boron nitride in the first place?

“We were actually trying to make cubic boron nitride, so these results were something of an interesting accident,” says Marks. Cubic boron nitride, the second-hardest known substance after diamond, is used as a coating for high-temperature cutting tools.

Boron nitride nanomaterials have been an elusive research target ever since carbon buckyballs and tubes were discovered in the 1980s. While researchers have been able to produce boron nitride nanotubes, those nanostructures were always exposed to air and “contaminated” by stray air molecules in the attempt to get a clear image of them.

By growing and imaging the hair-like nanomaterial in an almost complete vacuum, Marks has achieved a significant first.

To explain why the boron nitride “wool” exhibits so many different shapes and structures, Marks theorizes that the hexagonal pattern of boron and nitrogen atoms is periodically interrupted by fourfold and eightfold rings-joints that may enable them to bend in different directions. In contrast, carbon nanotubes are mostly composed of hexagons with occasional five- or seven-molecule rings.

The even-numbered rings in boron nitride may make it a much more stable material, he says.

Marks continues to work with boron nitride in the lab but notes that the deposition technique he used to produce the boron nitride “wool” is very close to commercial processes in use today.

“It’s just a variant on the method used to produce the titanium nitride that makes the chrome-plated door handles in your hardware store strong enough to offer a lifetime guarantee,” he says.

Keep Reading

Most Popular

computation concept
computation concept

How AI is reinventing what computers are

Three key ways artificial intelligence is changing what it means to compute.

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

seeing is believing concept
seeing is believing concept

Our brains exist in a state of “controlled hallucination”

Three new books lay bare the weirdness of how our brains process the world around us.

We reviewed three at-home covid tests. The results were mixed.

Over-the-counter coronavirus tests are finally available in the US. Some are more accurate and easier to use than others.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.