MIT Technology Review Subscribe

8.13 and 8.14: Physics Junior Lab

In 8.13 and 8.14, the 18-credit-hour classes known as Physics Junior Lab, students are introduced to experimental physics by replicating classic early-20th-century discoveries in such things as special relativity, quantum mechanics, and nuclear physics. The labs involve a lot of finessing of equipment, connecting of cables, and twiddling of knobs—not the sort of thing you can easily put online.

But Junior Lab professors Gunther Roland and Phil Harris, PhD ’11, both regularly collaborate with researchers around the globe on particle physics experiments requiring the analysis of enormous data sets. These big projects require that all of them be able not just to communicate across time zones but also to access experiments and data remotely. 

Advertisement

So when the classes went online, they had students use data from the Large Hadron Collider at CERN to replicate the analysis that confirmed the existence of the Higgs boson. Students also got to work with data from the Laser Interferometer Gravitational-Wave Observatory (LIGO) and repeat the analysis that identified the gravitational waves caused by the collision of two black holes—work published in 2016 that led to a Nobel Prize for MIT professor Rainer Weiss.

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

Junior Lab students, who work in pairs, could no longer look at each other’s notebooks in the lab, but Roland says having lab partners use a shared online notebook encouraged more collaboration, an essential skill for experimental physicists. Students both edited the same document, and instructors could scroll through their notebooks in Zoom meetings and see their plots and calculations. Roland and Harris plan to keep the online shared notebooks—and may add a menu of projects like those using LIGO and LHC data—when everyone’s back on campus. 

“I don’t think it should be the only thing,” Roland says, since that sort of analysis-based work lacks what he calls the “fiddling-with-the-knobs part” so essential in experimental physics. “The hands-on component is also very important. But it allows the students to do things that are cutting-edge right now instead of cutting-edge in the 1920s.” 

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement