MIT Technology Review Subscribe

Knotty by nature

A new mathematical model reveals which types of knots are strongest—and why.
knot
Courtesy Image

Any seasoned sailor knows that one type of knot will secure a sheet to a headsail, while another is better for hitching a boat to a piling. But what exactly makes one knot more stable than another was not well understood—until associate professor of mathematics Jörn Dunkel created a mathematical model to study them.

Dunkel teamed up with Mathias Kolle, an associate professor of mechanical engineering, whose group had engineered stretchable fibers that change color in response to strain or pressure. His team used Kolle’s fibers to tie a variety of knots, including trefoils and figure-eights, photographing each fiber and noting where and when it changed color, along with the forces applied as it was pulled tight.

Advertisement

Using this data, they calibrated a model simulating the distribution of stress in knots. Then they simulated more complicated knots and drew up simple diagrams to represent them.

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

In comparing diagrams for the common granny, reef, thief, and grief knots, along with more complicated ones such as the carrick, zeppelin, and Alpine butterfly, the researchers identified some general rules. Basically, a knot is stronger if it has more strand crossings, as well as more “twist fluctuations”—changes in the direction each segment of a strand rotates as a knot is tightened. These changes create friction that promotes stability.

They also found that a knot can be made stronger if it has more “circulations”—regions where two parallel strands loop against each other in opposite directions.

“If you take a family of similar knots from which empirical knowledge singles one out as ‘the best,’ now we can say why it might deserve this distinction,” says Kolle. “We can play knots against each other for uses in suturing, sailing, climbing, and construction.”

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement