MIT Technology Review Subscribe

Flexible diamonds

Brittle material is bendable in tiny needle form.

Diamond is well known to be the strongest of all natural materials, but that strength comes at a price: brittleness. So an international team of researchers from MIT, Hong Kong, Singapore, and Korea was surprised to discover that when grown in extremely tiny, needle–like shapes, diamond can bend and stretch, much like rubber, and snap back to its original shape.

The team showed that narrow diamond needles, similar in shape to the rubber tips on the end of some toothbrushes but just a few hundred nanometers across, could flex and stretch by as much as 9 percent without breaking and then return to their original configuration. Ordinary diamond in macroscopic form stretches much less than 1 percent.

Advertisement

Putting crystalline materials such as diamond under very large elastic strains, as happens when these pieces flex, can change their mechanical, thermal, optical, magnetic, electrical, electronic, and chemical reaction properties in significant ways. The process could be used to design materials for specific applications through what’s known as “elastic strain engineering,” the team says.

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

The diamond needles, which were grown through a chemical vapor deposition process and then etched to their final shape, were observed in a scanning electron microscope while being pressed with a standard diamond-tip “nanoindenter.” The team also did simulations to interpret the results and was able to determine precisely how much stress and strain the needles could accommodate.

The unexpected find was reported this year in Science by senior author Ming Dao, a principal research scientist in MIT’s Department of Materials Science and Engineering. He says the results could open the door to a variety of diamond-based devices for applications such as sensing, data storage, actuation, biocompatible in vivo imaging, optoelectronics, and drug delivery. For example, diamond has been explored for delivering drugs into cancer cells, and if the tips are flexible, they could be more resistant to breakage. 

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement