MIT Technology Review Subscribe

Diving Dry

Study shows why waterbirds are waterproof.

When diving birds resurface, water rolls off their feathers like, well, water off a duck’s back. That classic example of efficient water-shedding is made possible by both chemistry—the birds’ preening oil—and the microstructure of feathers.

feathers of an African darter
Wing feathers of an African darter immersed in water (dyed blue) repel the water, whose surface curves down. But the feathers are wetted by an oil (dyed red), whose surface curves up. Watch video.

New research, published in the Journal of the Royal Society Interface, reveals how diving birds can reach depths of some 30 meters without having water permanently wet their protective feathers.

Advertisement

Through lab tests and modeling, researchers from MIT and London’s Natural History Museum separated chemical and structural effects to show why the combination of surface coating and shape is so effective. They coated feathers from six types of diving birds with a layer that neutralized the effect of the preening oil and then recoated them with hydrophobic material, preventing variations in oil composition from affecting the results.

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

It had been known that during dives, feathers trap a thin insulating layer of air called a plastron, so water never comes into direct contact with the skin. The new work shows that beyond a depth of just a few meters that plastron collapses, letting water penetrate into the feather structures. The depth dependence of this phenomenon had not previously been known. “It’s an abrupt transition,” says chemical engineering professor Robert Cohen.

But once the protective air layer collapses, the preen oil prevents the water from penetrating the feathers’ barbs and barbules. Consequently, when the birds emerge from the water, “if a feather gets wet, there is no need for it to dry out, in the traditional sense of evaporation,” Cohen says. “It can dry by directly ejecting the water from its structure as the pressure is reduced when it comes back up from its dive.” The team refers to this as “spontaneous dewetting.”

But this process only works with water. If a feather is immersed in oil, as it might be after an oil spill, the feathers are fully wetted, mechanical engineering professor Gareth McKinley explains: “The thermodynamics show that if [feathers] get wetted by oil, they’re going to stay wetted, irreversibly, unless you steam-clean them or something.”

“Diving birds are only just adapted, partly through the microstructure of their feathers, to reach their maximum diving depths without suffering permanent effects,” says team member Andrew Parker of the Natural History Museum, which provided feathers for the research. “It is one of the most amazing examples of evolution and adaptation, with not a trace of overengineering.”

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement