MIT Technology Review Subscribe

Human Motion Will Power the Internet of Things, Say Energy Harvesting Engineers

Most people generate enough power to continuously transmit data at a rate of 1 Kb/s, say researchers who have audited the harvestable energy from human motion

The Internet of Things is the imagined network of data links that will emerge when everyday objects are fitted with tiny identifying devices.

The idea is that every parcel in a post office would transmit its position, origin and destination so that it can be tracked and routed more efficiently, that every product on a supermarket shelf would transmit its contents, price, shelf life and so on, that your smartphone would interrogate the contents of your fridge and cupboards every time you walk into the kitchen to warn you when the milk is running low. And so on.

Advertisement

Each of these things will enhance our businesses and lifestyles in a small way. But taken together, this Internet of Things will entirely transform the way we interact with the world around us. That’s the hope at least.

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

But there’s a problem: these tiny identifying devices require a power source. Batteries are expensive and impractical so computer scientists are hoping to harvest the necessary energy from the environment, in particular from lights and from human motion.

The question is how much energy is available in this way. That’s relatively straightforward to answer for indoor lights (about 50-100 microwatts per cm^2). But the energy available from human motion is much harder to assess.

That’s piqued the interest of Maria Gorlatova and pals at Columbia University in New York who have measured the inertial energy available from the activity of 40 individuals over periods up to 9 days. To do this they attached to each person inertial energy harvesting devices, essentially a mass attached a spring, that recorded their motion.

“To the best of our knowledge, the dataset that we analyze is the first publicly available acceleration dataset collected for a large number of participants,” they say.

They also measured the power available from the movement of objects such as doors, drawers and pencils to see how much might be harvested here.

The results are often surprising and sometimes counterintuitive. Here’s a list of their main findings:

That’s an interesting set of results. Engineers are already designing algorithms to manage the way energy is harvested, stored and then used. Gorlatova and co say this kind of work will help to make these as efficient as possible.

Advertisement

Beyond this, an interesting question is when we will begin to see commercial energy harvesting devices. Perhaps the first candidates are the increasing numbers of human motion sensors on the market.

Devices such as the Fitbit and the Nike Fuel Band have been continuously recording the daily activity of many thousands of individuals for some years now. It’ll be interesting to see how these companies use this data to improve their products which now require regular charging or disposable batteries.

Beyond that, substantial research dollars are currently being invested in designing computing devices that operate at low enough power levels to benefit from energy harvesting.

What seems clear from this and other work is that the Internet of Things is coming and that if the problem of power once looked like a showstopper, this is no longer a worry.

Ref: arxiv.org/abs/1307.0044: Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things  

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement