MIT Technology Review Subscribe

Solar Cell Thinner Than Spider Silk Could Power Internet of Things

Will ephemeral plastic solar cells make ubiquitous sensor networks a reality?

When you think about how to power a distributed network of environmental sensors–the kind we’ll want to have in order to connect the entirety of our physical world to the Internet of Things–the answer is obvious: solar power. Most of these sensors are by nature too tiny to have access to much of a temperature gradient, and a steady supply of vibrations isn’t always available. Batteries have limited lifespans and add bulk and expense.

(a) Ultra-light, flexible organic solar cell, (b) wrapped around a 35-μm-radius human hair

That’s one of the reasons that organic and polymer-based solar cells are so interesting, particularly the latest development: A polymer-based (i.e. plastic) solar cell thinner than spider silk that can be bent and crumpled and still produces power.

Advertisement
(c) Stretchable solar cells made by attaching the ultrathin solar cell to a pre-stretched elastomer

From the abstract of the paper announcing their development:

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date.

This solar plastic only converts 4.2 percent of the sun’s energy into electricity, which is awful by the standards of conventional polycrystalline solar cells, but absolutely miraculous when you consider how thin and versatile this material could be.

For example, Tsuyoshi Sekitani from the University of Tokyo, one of the researchers on this project, told the AFP that this material could be worn on clothing like a badge, to power a personal health monitor. So why not a thin film under a protective shield, on the back of gadgets, so that prolonging their battery life is as simple as leaving them in a sunny spot?

When it comes to the Internet of Things, tiny sensors require tiny amounts of energy, and that’s exactly what organic solar cells can provide. Price and size are the factors that will determine whether or not they become ubiquitous, and this announcement suggests that it’s only a matter of time before both requirements are met by organic solar cells.

 Follow @Mims or get in touch

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement